ANTIPA SECURES HIGH-GRADE CHICKEN RANCH GOLD DEPOSIT

Highlights

- Exploration licence application over the high-grade Chicken Ranch gold deposit successful.
- Best drilling results include:
 - 16.0m at 6.6 grams per tonne (g/t) gold (Au) from 65m down hole (CRRC001) including:
 - 5.0m at 18.9 g/t Au.
 - o 22.0m at 4.3 g/t Au from 23m down hole (CR46) including:
 - 4.0m at 18.3 g/t; and
 - 6.0m at 3.9 g/t.
 - o 22.0m at 4.1 g/t Au from 28m down hole (CRB390) including:
 - 3.0m at 21.1 g/t Au.
 - 9.0m at 7.6 g/t Au from 0m down hole (CR12) including:
 - 3.0m at 14.3 g/t Au.
 - 6.0m at 7.6 g/t Au from 29m down hole (CR228) including:
 - 2.0m at 20.5 g/t Au.
 - o 4.0m at 11.1 g/t Au from 83m down hole (YRB2423) including:
 - 2.0m at 21.5 g/t Au.
 - o 5.0m at 7.5 g/t Au from 42m down hole (CR95) including:
 - 1.0m at 26.5 g/t Au.
 - 8.0m at 3.9 g/t Au from 12m down hole (CRRC008) including:
 - 2.0m at 11.4 g/t Au.
 - 4.0m at 7.8 g/t Au from 23m down hole (CRRC012) including:
 - 1.0m at 26.7 g/t Au.
 - 7.0m at 3.0 g/t Au from 35m down hole (YRB1002).
 - o 5.0m at 4.0 g/t Au from 38m down hole (CRRC016).
 - 2.0m at 10.5 g/t Au from 71m down hole (YRB1023) including:
 - 1.0m at 20.4 g/t Au.
- Gold mineralisation along a +3km strike length within two or more parallel mineralised gold trends.
- Located just 15km northeast of Newcrest's world-class Telfer gold-copper-silver mine and 25km south of Antipa's Minyari-WACA high-grade gold deposits.
- Compelling synergies with Antipa's Minyari Dome development opportunity and broader Paterson Province exploration strategy.

Antipa Minerals Ltd (ASX: AZY) ("Antipa") is pleased to announce it has successfully applied for an exploration licence over the high-grade gold Chicken Ranch deposit and Turkey Farm prospect. These deposits are located in Western Australia's Paterson Province just 15km from Newcrest's world-class Telfer gold-copper-silver mine and 25km from Antipa's Minyari Dome deposits (Figures 1 and 2).

Managing Director Roger Mason said, "The addition of the high-grade Chicken Ranch gold deposit to the Company's already prolific Paterson Province exploration portfolio is very exciting, particularly given that Chicken Ranch is situated close to our Minyari Dome high-grade gold deposits. The acquisition of this project delivers obvious and compelling synergies with Antipa's Minyari Dome development opportunity and our broader Paterson Province exploration strategy."

Chicken Ranch Area (E45/4867) - Overview

The Chicken Ranch exploration licence application E45/4867, which forms part of the Company's 100% owned Telfer Dome Project, hosts the high-grade Chicken Ranch gold deposit and Turkey Farm prospect. E45/4867 is located close to infrastructure, just 15km northeast of Newcrest's world-class Telfer gold-copper-silver mine and 25km south of the Company's high-grade Minyari and WACA gold deposits (Figures 1 and 2).

The Chicken Ranch area provides the Company with immediate exploration targets for high-grade gold resources and enhances the potential of the Company's short-term development strategy. Exploration targets include high-grade Telfer 'Reef Style' gold mineralisation and vein and/or stockwork style mineralisation. The Chicken Ranch deposit and Turkey Farm prospect extend for approximately 1.1km and 675m respectively, in addition a number of poorly or untested targets have already been identified. There are just 10 drill holes on exploration licence E45/4867 that penetrate more than 100 vertical metres below the surface.

Exploration licence E45/4867 is also adjacent to the Company's granted exploration licence E45/4518 which hosts significant mineralisation at the Big Banana, Pajero, Wobbley's Gossan and 282 Reef prospects, all located within 4km of the Chicken Ranch deposit, providing further scope for exploration success and development synergies (Figures 1 and 2).

Antipa has already assembled a comprehensive suite of exploration data on the Chicken Ranch area, which will form the basis for future exploration, including:

- Extensive drill hole database;
- Significant surface geochemical database (Figures 6 and 7);
- · Geological mapping; and
- Geophysical data including; aeromagnetics, heliborne electromagnetics, limited Induced Polarisation and aerial Falcon™ gravity (partial coverage).

Chicken Ranch Deposit - Key Metrics:

- Located just 15km northeast of Newcrest's world-class Telfer gold-copper-silver mine and 25km south of the Company's Minyari Dome area (Figures 1 and 2).
- Situated on the northeastern flank of Camp Dome geological structure and 6km east of Newcrest Mining Limited's 17 Mile Hill copper deposit (purported to contain 8.5 million tonnes at 0.63% copper for 54,000 tonnes of copper – source WA DMP/DMIRS - MINDEX).

- High-grade gold with minor copper mineralisation as gossanous zones within and related to northwest trending, steeply dipping quartz veins hosted by deeply oxidized meta-sediments (Figures 3 to 5).
- Gold mineralisation commences from surface or very near to surface and extends down for more than 130 vertical metres (Figures 4 and 5).
- +1.1km strike length (Figure 3).
- Main zone consists of two or more northwest trending zones of mineralisation within a corridor up to 70m in width;
- Several additional northwestern trending mineralisation zones to the east and west of the main zone; and
- High-grade gold shoots remain open down dip and along the 1.1km currently defined strike length.

Turkey Farm Prospect - Key Metrics:

- 800m west-northwest of the Chicken Ranch deposit (Figures 1 to 3);
- Broad spaced drilling, with drill sections generally between 200 to 220m apart;
- Gold with minor copper mineralisation within northwest trending, steeply dipping quartz ironstone veins and possible shallow (25° to 30°) east dipping zones hosted by deeply oxidized meta-sediments;
- Sporadic high-grade gold mineralisation intersected from approximately 15m to 60m below the surface;
- Best intersection:
 - 3.0m at 5.07 g/t Au and 0.05% Cu from 65m down hole (YRB5057) including:
 - 1.0m at 12.1 g/t Au and 0.04% Cu.
- +675m strike length; and
- Mineralisation remains open down dip and along strike.

Pajero Area (E45/4518) - Overview

The granted Pajero exploration licence E45/4518, which also forms part of the Company's 100% owned Telfer Dome Project, adjoins the western boundary of the Chicken Ranch exploration licence E45/4867 and hosts gold with copper mineralisation at Big Banana, Pajero, Wobbley's Gossan and 282 Reef prospects (Figures 1 and 2). The Pajero exploration licence is centred on the Camp Anticline with the Telfer Member lithology (i.e. the preferred host rock of high-grade 'Reef Style' gold and copper mineralisation at the Telfer deposit) occupying approximately 40% of the licence area. The area is prospective for high-grade Telfer 'Reef Style' gold mineralisation and vein and/or stockwork style mineralisation. The Company has already assembled the same comprehensive suite of exploration data for E45/4867 which will form the basis for future exploration.

Big Banana Prospects - Key Metrics:

- 1.4km south of the Chicken Ranch deposit (Figures 1 and 2);
- Four 50m spaced drill sections across a 200m strike length with an average drill hole depth of 57m, with no drill holes penetrating greater than 80m below the surface;
- Orientation and controls of gold (with copper) mineralisation uncertain, host rock mainly oxidized meta-sediments;
- Sporadic high-grade gold mineralisation intersected from approximately 10m to 100m below the surface;

- Best intersection:
 - 20.0m at 3.50 g/t Au from 13m down hole (CR324) including:
 - 4.0m at 12.0 g/t Au.
- Mineralisation extents remain open.

Pajero / Pajero North Prospects - Key Metrics:

- 3km south of the Chicken Ranch deposit (Figures 1 and 2);
- Irregular drill hole distribution across a 1,500m by 1,000m area with an average drill hole depth of only 43m;
- Orientation and controls of gold (with copper) mineralisation uncertain, host rock mainly oxidized Telfer Member meta-sediments;
- Sporadic gold mineralisation intersected from the surface to 30m below the surface;
- Best intersection:
 - 2.0m at 7.28 g/t Au from 3m down hole (SHR014) including:
 - 1.0m at 11.8 g/t Au.
- Mineralisation extents remain open.

Wobbley's Gossan Prospects - Key Metrics:

- 2.8km south of the Chicken Ranch deposit (Figures 1 and 2);
- Irregular drill hole distribution across a 1,600m by 600m area with an average drill hole depth of only 40m;
- Orientation and controls of gold (with copper) mineralisation uncertain, host rock mainly oxidized meta-sediments;
- Sporadic gold mineralisation intersected from near surface to 40m below the surface;
- Best intersection:
 - 1.0m at 1.83 g/t Au from 16.0m down hole (YRB5076); and
- Mineralisation extents remain open.

Next Steps and Timing

On ground exploration at the Chicken Ranch area will commence subsequent to granting of the 29 km² exploration licence E45/4867, which is expected to occur by the New Year. In the interim, the Company continues with its compilation and evaluation of all available data, which will form the basis for the design of the forthcoming exploration programme.

For further information, please visit www.antipaminerals.com.au or contact:

Stephen Power	MEDIA Contact: Tony Dawe
Executive Chairman	Citadel-MAGNUS
Antipa Minerals Ltd	0405 989 743
+61 (0)8 9481 1103	tdawe@citadelmagnus.com
	Executive Chairman Antipa Minerals Ltd

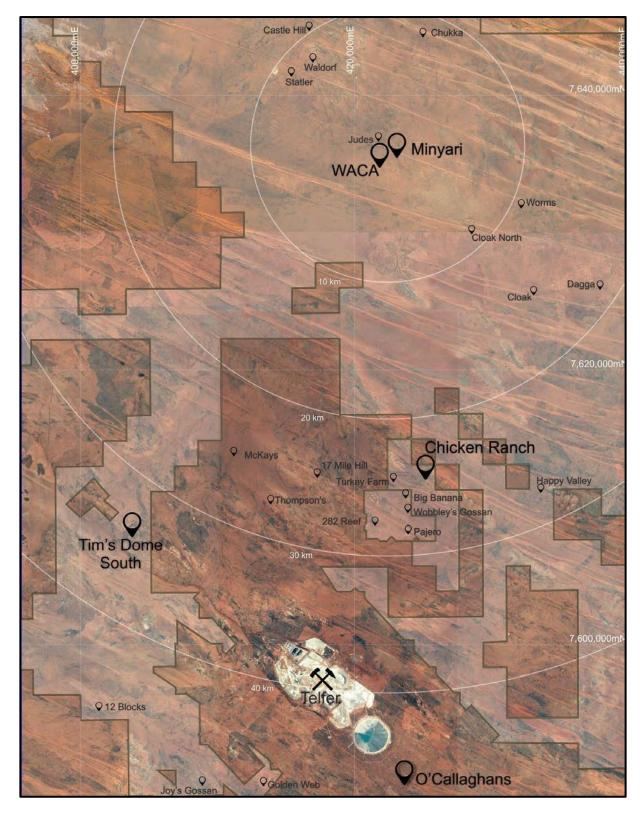


Figure 1: Southern Paterson Province region showing Antipa's exploration licences ('shaded' region) surrounding Newcrest's world-class Telfer gold-copper-silver mine and extending north. Chicken Ranch area is 25km south of the Company's high-grade Minyari and WACA gold deposits and 15km northeast of Telfer. MGA Zone 51/GDA 94 - 20km grid.

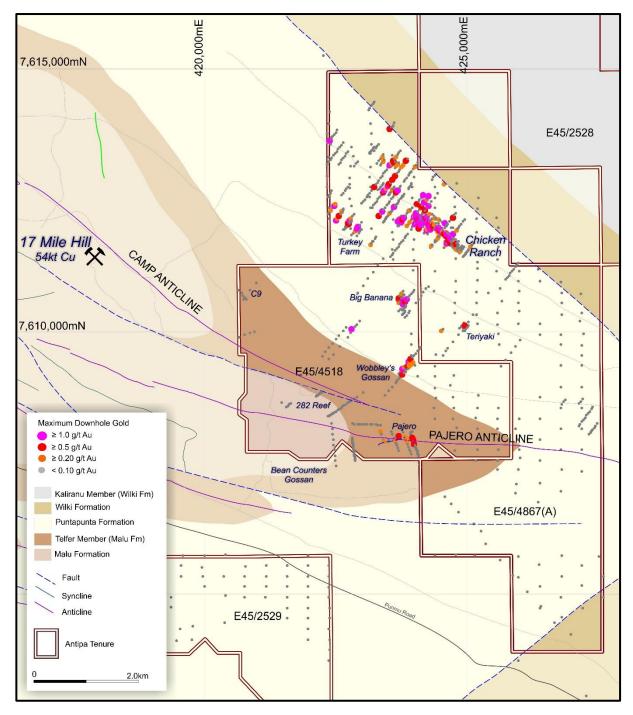


Figure 2: Chicken Ranch exploration licence (E45/4867) and Pajero exploration licence (E45/4518) areas showing drill hole distribution and maximum downhole gold over interpreted geology map. MGA Zone 51/GDA 94 - 5km grid.

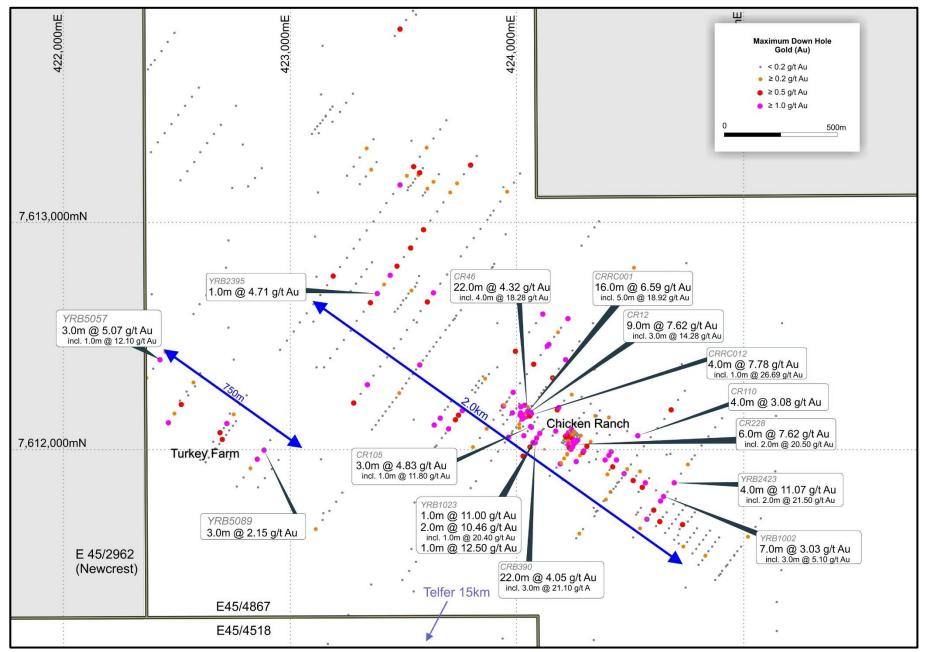


Figure 3: Chicken Ranch deposit and Turkey Farm prospect area showing drill hole distribution and maximum downhole gold. MGA Zone 51/GDA 94 - 1km grid.

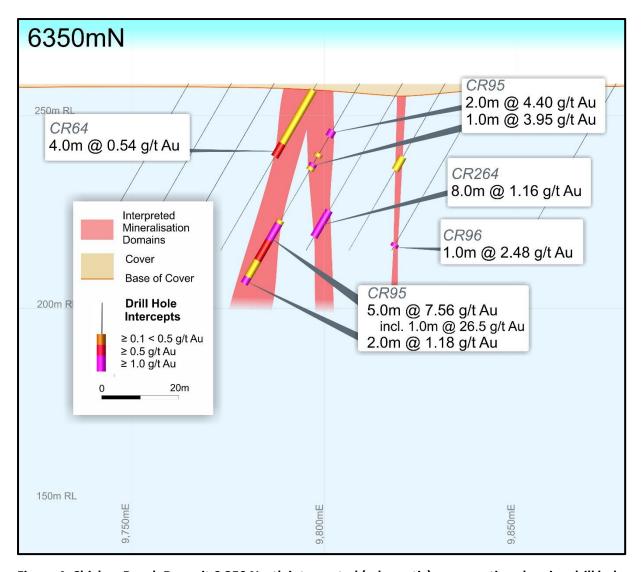


Figure 4: Chicken Ranch Deposit 6,350 North interpreted (schematic) cross-section showing drill holes with gold grade bars and interpreted gold \pm copper mineralisation domains (50m Local Grid – looking north).

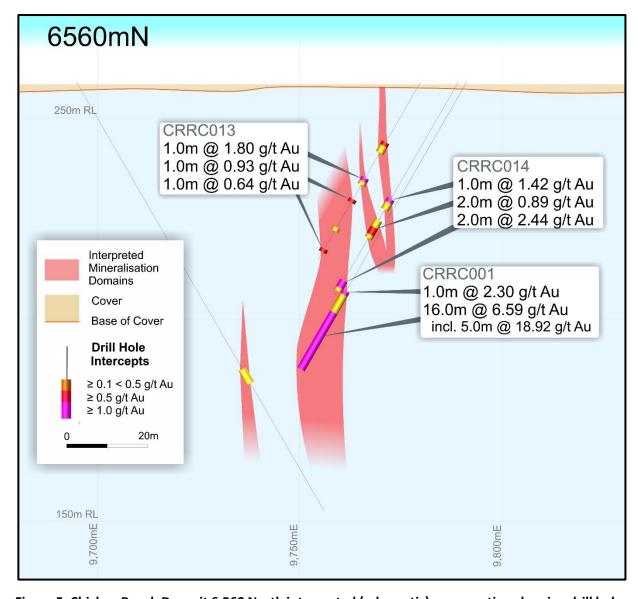


Figure 5: Chicken Ranch Deposit 6,560 North interpreted (schematic) cross-section showing drill holes with gold grade bars and interpreted gold \pm copper mineralisation domains (50m Local Grid – looking north).

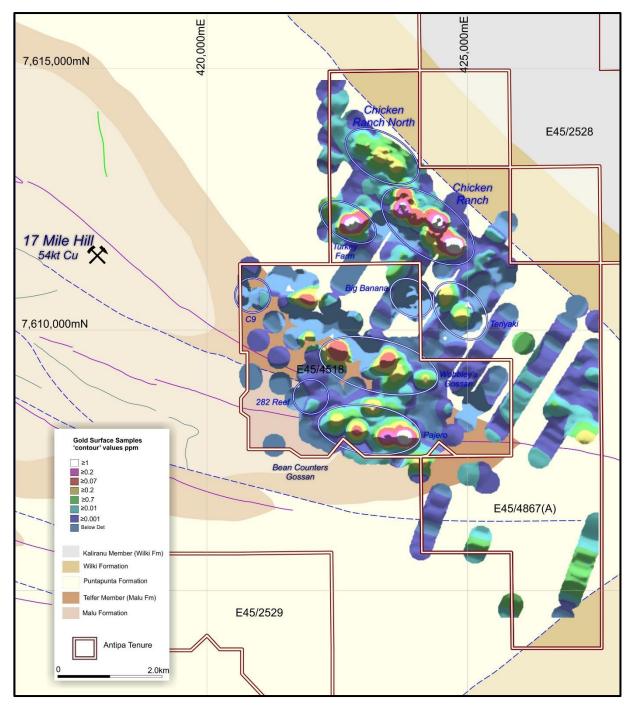
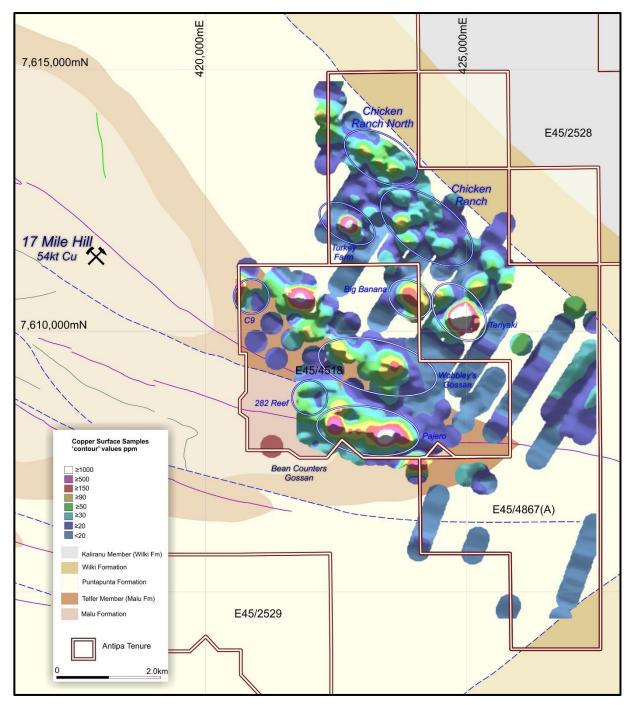
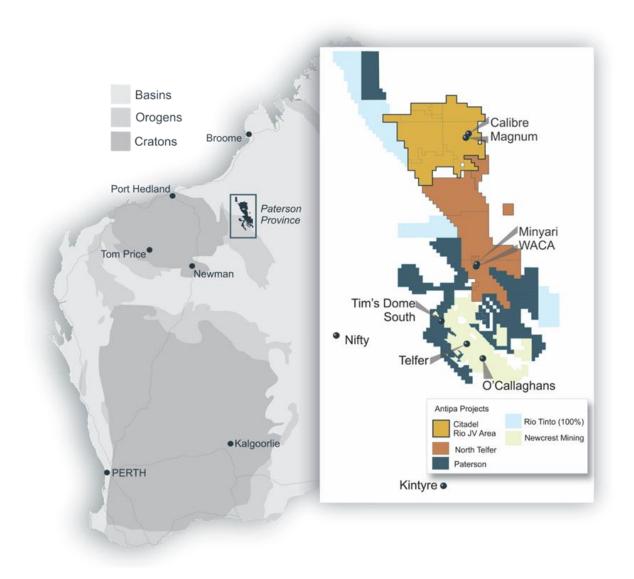


Figure 6: Chicken Ranch exploration licence (E45/4867) and Pajero exploration licence (E45/4518) areas showing contoured/'gridded' gold surface samples (i.e. lag # 1,504, rock-chip # 318, soils # 36) over interpreted geology map. Note significant anomalous surface gold results in both exploration licence areas, including indications of possible offset of the Chicken Ranch deposit.

'Gridding' parameters = ioGAS geochemical software using a 10m Cell Size and Inverse Distance Weighting interpolation with a 15m search radius. MGA Zone 51/GDA 94 - 5km grid.




Figure 7: Chicken Ranch exploration licence (E45/4867) and Pajero exploration licence (E45/4518) areas showing contoured/'gridded' copper surface samples (i.e. lag # 1,504, rock-chip # 318, soils # 36) over interpreted geology map. Note significant anomalous surface copper results in both exploration licence areas, including indications of possible offset of the Chicken Ranch deposit.

'Gridding' parameters = ioGAS geochemical software using a 10m Cell Size and Inverse Distance Weighting interpolation with a 15m search radius. MGA Zone 51/GDA 94 - 5km grid.

About Antipa Minerals:

Antipa Minerals Ltd is an Australian public company which was formed with the objective of identifying under-explored mineral projects in mineral provinces which have the potential to host world-class mineral deposits, thereby offering high leverage exploration potential. The Company owns a 1,335km² package of prospective granted tenements in the Paterson Province of Western Australia known as the Citadel Project. The Citadel Project is located approximately 75km north of Newcrest's Telfer gold-copper-silver mine and includes the gold-copper-silver±tungsten Mineral Resources at the Calibre and Magnum deposits and high-grade polymetallic Corker deposit. Under the terms of a Farm-in and Joint Venture Agreement with Rio Tinto Exploration Pty Limited ("Rio Tinto"), a wholly owned subsidiary of Rio Tinto Limited, Rio Tinto can fund up to \$60 million of exploration expenditure to earn up to a 75% interest in Antipa's Citadel Project.

The Company has an additional 1,310km² of granted exploration licences, known as the North Telfer Project which hosts the high-grade gold-copper Minyari and WACA deposits and extends its ground holding in the Paterson Province to within 20km of the Telfer Gold-Copper-Silver Mine and 30km of the O'Callaghans tungsten and base metal deposit. The Company has also acquired, from the Mark Creasy controlled company Kitchener Resources Pty Ltd, additional exploration licences in the Paterson Province which are now all granted and cover 1,573km² and the Company owns a further 138km² of exploration licences (including both granted tenements and applications), which combined are known as the Paterson Project, which comes to within 3km of the Telfer mine and 5km of the O'Callaghans deposit.

Competent Persons Statement:

The information in this report that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Roger Mason, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Mason is a full-time employee of the Company. Mr Mason is the Managing Director of Antipa Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Mason has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mason consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements:

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Antipa Mineral Ltd's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward-looking statements. Although Antipa Minerals Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

 Table 1: Significant Historic Drill Hole Gold-Copper Drill Intercepts

Tenement	Deposit	Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)
/							
E45/4867	Chicken Ranch	CR1	0.0	2.0	2.0	0.84	
E45/4867	Chicken Ranch	CR104	39.0	46.0	7.0	2.31	
E45/4867	Chicken Ranch	including	41.0	42.0	1.0	8.00	
E45/4867	Chicken Ranch	CR105	9.0	13.0	4.0	0.82	
E45/4867	Chicken Ranch	CR105	19.0	20.0	1.0	1.83	
E45/4867	Chicken Ranch	CR105	51.0	54.0	3.0	4.83	
E45/4867	Chicken Ranch	including	51.0	52.0	1.0	11.80	
E45/4867	Chicken Ranch	CR105	54.0	56.0	2.0	0.68	
E45/4867	Chicken Ranch	CR110	32.0	36.0	4.0	3.08	
E45/4867	Chicken Ranch	CR114	18.0	20.0	2.0	1.05	
E45/4867	Chicken Ranch	CR119	13.0	17.0	4.0	2.45	
E45/4867	Chicken Ranch	CR119	37.0	41.0	4.0	0.50	
E45/4867	Chicken Ranch	CR12	0.0	9.0	9.0	7.62	0.02
E45/4867	Chicken Ranch	including	5.0	8.0	3.0	14.28	0.03
E45/4867	Chicken Ranch	CR120	30.0	31.0	1.0	1.21	
E45/4867	Chicken Ranch	CR122	21.0	24.0	3.0	1.88	
E45/4867	Chicken Ranch	CR123	10.0	14.0	4.0	0.60	
E45/4867	Chicken Ranch	CR128	24.0	26.0	2.0	1.41	
E45/4867	Chicken Ranch	CR161	42.0	45.0	3.0	0.67	
E45/4867	Chicken Ranch	CR176	10.0	13.0	3.0	0.53	
E45/4867	Chicken Ranch	CR207	66.0	70.0	4.0	0.58	
E45/4867	Chicken Ranch	CR223	40.0	43.0	3.0	2.03	
E45/4867	Chicken Ranch	CR223	43.0	46.0	3.0	0.71	
E45/4867	Chicken Ranch	CR228	29.0	35.0	6.0	7.62	
E45/4867	Chicken Ranch	including	29.0	31.0	2.0	20.50	
E45/4867	Chicken Ranch	CR228	41.0	43.0	2.0	1.18	
E45/4867	Chicken Ranch	CR230	17.0	19.0	2.0	3.55	
E45/4867	Chicken Ranch	CR234	25.0	41.0	16.0	1.10	
E45/4867	Chicken Ranch	including	33.0	35.0	2.0	4.50	
E45/4867	Chicken Ranch	CR235	25.0	29.0	4.0	1.40	
E45/4867	Chicken Ranch	CR238	13.0	16.0	3.0	0.65	
E45/4867	Chicken Ranch	CR245	19.0	26.0	7.0	2.87	
E45/4867	Chicken Ranch	including	24.0	25.0	1.0	10.00	
E45/4867	Chicken Ranch	CR258	14.0	18.0	4.0	0.56	
E45/4867	Chicken Ranch	CR259	18.0	26.0	8.0	0.71	
E45/4867	Chicken Ranch	CR264	38.0	46.0	8.0	1.16	
E45/4867	Chicken Ranch	CR265	10.0	14.0	4.0	0.54	
E45/4867	Chicken Ranch	CR31	8.0	12.0	4.0	0.52	
E45/4867	Chicken Ranch	CR46	23.0	45.0	22.0	4.32	0.02
E45/4867	Chicken Ranch	including	24.0	28.0	4.0	18.28	0.02
E45/4867	Chicken Ranch	CR55	30.0	45.0	15.0	2.04	
E45/4867	Chicken Ranch	including	34.0	37.0	3.0	3.72	0.03
E45/4867	Chicken Ranch	also incl.	39.0	40.0	1.0	5.10	
E45/4867	Chicken Ranch	also incl.	42.0	43.0	1.0	9.30	
E45/4867	Chicken Ranch	CR63	21.0	24.0	3.0	0.70	
E45/4867	Chicken Ranch	CR63	26.0	30.0	4.0	0.76	
E45/4867	Chicken Ranch	CR63	57.0	69.0	12.0	2.25	
E45/4867	Chicken Ranch	including	58.0	64.0	6.0	3.94	
E45/4867	Chicken Ranch	CR64	9.0	13.0	4.0	1.73	
E45/4867	Chicken Ranch	CR65	23.0	27.0	4.0	1.17	
E45/4867	Chicken Ranch	CR65	34.0	35.0	1.0	6.20	
E45/4867	Chicken Ranch	CR73	18.0	19.0	1.0	1.28	
E45/4867	Chicken Ranch	CR95	14.0	16.0	2.0	4.40	
E45/4867	Chicken Ranch	CR95	24.0	25.0	1.0	3.95	
E45/4867	Chicken Ranch	CR95	42.0	47.0	5.0	7.53	
E45/4867	Chicken Ranch	including	43.0	44.0	1.0	26.50	
E45/4867	Chicken Ranch	CR95	47.0	53.0	6.0	0.55	
E45/4867	Chicken Ranch	CR95	58.0	60.0	2.0	1.18	
E45/4867	Chicken Ranch	CR96	48.0	49.0	1.0	2.48	
E45/4867	Chicken Ranch	CRB390	28.0	50.0	22.0	4.05	
E45/4867	Chicken Ranch	including	29.0	32.0	3.0	21.10	

Tenement	Deposit	Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%
E45/4867	Chicken Ranch	CRB394	14.0	15.0	1.0	1.25	
E45/4867	Chicken Ranch	CRB397	40.0	44.0	4.0	2.59	
E45/4867	Chicken Ranch	CRB401	12.0	16.0	4.0	2.75	
E45/4867	Chicken Ranch	CRD930	122.2	129.3	7.1	2.17	
E45/4867	Chicken Ranch	including	122.2	122.8	0.6	11.80	
E45/4867	Chicken Ranch	CRD930	153.1	154.4	1.3	5.79	
E45/4867	Chicken Ranch	including	153.6	154.1	0.5	11.60	
E45/4867	Chicken Ranch	CRD930	212.6	215.4	2.8	0.72	
E45/4867	Chicken Ranch	CRD93-2	16.0	20.0	4.0	1.35	
E45/4867	Chicken Ranch	CRRB004	32.0	35.0	3.0	1.90	
E45/4867	Chicken Ranch	CRRB006	2.0	3.0	1.0	1.24	
E45/4867	Chicken Ranch	CRRC001	59.0	60.0	1.0	2.30	
E45/4867	Chicken Ranch	CRRC001	65.0	81.0	16.0	6.59	
E45/4867	Chicken Ranch	including	71.0	76.0	5.0	18.92	
E45/4867	Chicken Ranch	CRRC003	59.0	62.0	3.0	1.11	
E45/4867	Chicken Ranch	CRRC003	81.0	82.0	1.0	1.85	
E45/4867	Chicken Ranch	CRRC005	18.0	22.0	4.0	3.39	
E45/4867	Chicken Ranch	including	21.0	22.0	1.0	10.80	
E45/4867	Chicken Ranch	CRRC005	25.0	26.0	1.0	1.45	
E45/4867	Chicken Ranch	CRRC005	33.0	36.0	3.0	1.71	
E45/4867	Chicken Ranch	CRRC008	12.0	20.0	8.0	3.94	0.03
E45/4867	Chicken Ranch	including	14.0	16.0	2.0	11.36	0.03
E45/4867	Chicken Ranch	CRRC008	77.0	79.0	2.0	1.73	
E45/4867	Chicken Ranch	CRRC011	54.0	57.0	3.0	1.73	
E45/4867	Chicken Ranch	CRRC011	72.0	73.0	1.0	3.68	
	Chicken Ranch	CRRC011	83.0		1.0		
E45/4867				84.0		2.30	
E45/4867	Chicken Ranch	CRRC012	14.0	15.0	1.0	1.93	
E45/4867	Chicken Ranch	CRRC012	18.0	20.0	2.0	1.16	0.03
E45/4867	Chicken Ranch	CRRC012	23.0	27.0	4.0	7.78	
E45/4867	Chicken Ranch	including	23.0	24.0	1.0	26.69	0.04
E45/4867	Chicken Ranch	CRRC013	27.0	28.0	1.0	1.80	
E45/4867	Chicken Ranch	CRRC014	33.0	34.0	1.0	1.42	
E45/4867	Chicken Ranch	CRRC014	41.0	43.0	2.0	0.89	
E45/4867	Chicken Ranch	CRRC014	56.0	58.0	2.0	2.44	
E45/4867	Chicken Ranch	CRRC015	37.0	39.0	2.0	3.45	
E45/4867	Chicken Ranch	CRRC016	1.0	2.0	1.0	1.49	
E45/4867	Chicken Ranch	CRRC016	23.0	24.0	1.0	1.29	
E45/4867	Chicken Ranch	CRRC016	27.0	28.0	1.0	3.56	
E45/4867	Chicken Ranch	CRRC016	38.0	43.0	5.0	4.02	0.08
E45/4867	Chicken Ranch	including	38.0	39.0	1.0	7.06	0.03
E45/4867	Chicken Ranch	also incl.	42.0	43.0	1.0	9.15	0.23
E45/4867	Chicken Ranch	CRRC018	37.0	39.0	2.0	0.67	
E45/4867	Chicken Ranch	CRRC019	0.0	1.0	1.0	2.74	0.03
E45/4867	Chicken Ranch	CRRC019	10.0	12.0	2.0	3.09	
E45/4867	Chicken Ranch	CRRC019	24.0	27.0	3.0	6.49	0.04
E45/4867	Chicken Ranch	including	26.0	27.0	1.0	17.79	0.06
E45/4867	Chicken Ranch	CRRC020	27.0	30.0	3.0	3.37	0.06
E45/4867	Chicken Ranch	including	28.0	29.0	1.0	5.06	0.09
E45/4867	Chicken Ranch	CRRC020	36.0	39.0	3.0	0.45	
E45/4867	Chicken Ranch	CRRC021	22.0	23.0	1.0	3.01	
E45/4867	Chicken Ranch	YRB1002	14.0	15.0	1.0	1.95	
E45/4867	Chicken Ranch	YRB1002	35.0	42.0	7.0	3.03	
E45/4867	Chicken Ranch	including	36.0	39.0	3.0	5.10	0.03
E45/4867	Chicken Ranch	YRB1002	48.0	49.0	1.0	1.00	
E45/4867	Chicken Ranch	YRB1003	18.0	19.0	1.0	4.09	
E45/4867	Chicken Ranch	YRB1004	95.0	99.0	4.0	0.67	
E45/4867	Chicken Ranch	YRB1009	17.0	18.0	1.0	1.27	
E45/4867	Chicken Ranch	YRB1016	7.0	9.0	2.0	1.12	
E45/4867	Chicken Ranch	YRB1023	53.0	54.0	1.0	11.00	
E45/4867	Chicken Ranch	YRB1023	71.0	73.0	2.0	10.46	0.03
E45/4867	Chicken Ranch	including	71.0	72.0	1.0	20.40	0.04
E45/4867	Chicken Ranch	YRB1023	79.0	80.0	1.0	12.50	0.04
E45/4867	Chicken Ranch	YRB1024	67.0	68.0	1.0	1.85	
F45/4Xh/							

Tenement	Deposit	Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)
E45/4867	Chicken Ranch	YRB2007	63.0	64.0	1.0	1.01	
E45/4867	Chicken Ranch	YRB2024	56.0	57.0	1.0	2.36	
E45/4867	Chicken Ranch	YRB2025	14.0	18.0	4.0	0.77	
E45/4867	Chicken Ranch	YRB2026	39.0	40.0	1.0	7.67	0.03
E45/4867	Chicken Ranch	YRB2043	36.0	37.0	1.0	1.20	
E45/4867	Chicken Ranch	YRB2053	42.0	43.0	1.0	1.14	0.05
E45/4867	Chicken Ranch	YRB2063	54.0	58.0	4.0	0.73	
E45/4867	Chicken Ranch	YRB2063	65.0	66.0	1.0	1.05	
E45/4867	Chicken Ranch	YRB2137	9.0	13.0	4.0	0.50	0.05
E45/4867	Chicken Ranch	YRB2395	17.0	18.0	1.0	4.71	
E45/4867	Chicken Ranch	YRB2397	13.0	14.0	1.0	1.81	
E45/4867	Chicken Ranch	YRB2402	84.0	88.0	4.0	0.50	
E45/4867	Chicken Ranch	YRB2409	64.0	68.0	4.0	0.79	
E45/4867	Chicken Ranch	YRB2413	49.0	53.0	4.0	0.51	
E45/4867	Chicken Ranch	YRB2420	21.0	25.0	4.0	0.65	0.03
E45/4867	Chicken Ranch	YRB2423	83.0	87.0	4.0	11.07	0.02
E45/4867	Chicken Ranch	including	84.0	86.0	2.0	21.50	0.02
E45/4867	Chicken Ranch	YRB4044	24.0	25.0	1.0	2.09	0.00
E45/4867	Chicken Ranch	YRB4048	81.0	86.0	5.0	0.99	
E45/4867	Chicken Ranch	YRB4051	56.0	57.0	1.0	1.21	
E45/4867	Chicken Ranch	YRC001	138.0	139.0	1.0	1.38	
E45/4867	Chicken Ranch	YRC002	157.0	158.0	1.0	1.58	0.03
E45/4867	Chicken Ranch	YRC003	29.0	30.0	1.0	1.37	
E45/4867	Chicken Ranch	YRC003	54.0	57.0	3.0	0.96	0.03
E45/4867	Chicken Ranch	YRC003	75.0	77.0	2.0	1.02	
E45/4867	Chicken Ranch	YRC003	146.0	148.0	2.0	1.50	0.03
E45/4867	Turkey Farm	CR87	26.0	30.0	4.0	0.66	0.00
E45/4867	Turkey Farm	YRB5046	64.0	68.0	4.0	3.14	0.06
E45/4867	Turkey Farm	including	64.0	65.0	1.0	10.00	0.10
E45/4867	Turkey Farm	YRB5046	73.0	76.0	3.0	0.57	0.05
E45/4867	Turkey Farm	YRB5057	65.0	68.0	3.0	5.07	0.05
E45/4867	Turkey Farm	including	65.0	66.0	1.0	12.10	0.04
E45/4867	Turkey Farm	YRB5088	37.0	40.0	3.0	4.82	0.07
E45/4867	Turkey Farm	including	38.0	39.0	1.0	8.56	0.08
E45/4867	Turkey Farm	YRB5089	68.0	71.0	3.0	2.15	0.04
E45/4867	Turkey Farm	YRB5092	50.0	52.0	2.0	0.53	
E45/4867	Turkey Farm	YRB5092	60.0	62.0	2.0	2.29	
E45/4518	Big Banana	CR324	13.0	33.0	20.0	3.50	
E45/4518	Big Banana	including	13.0	17.0	4.0	12.00	
E45/4518	Big Banana	CRAC02	48.0	54.0	6.0	2.63	0.09
E45/4518	Big Banana	including	50.0	52.0	2.0	5.20	0.15
E45/4518	Big Banana	TFB023	27.0	30.0	3.0	1.04	
E45/4518	Big Banana	YRB2455	66.0	69.0	3.0	1.13	0.04
E45/4518	Big Banana	YRB2455	113.0	115.0	2.0	3.25	
E45/4518	Pajero	CSMH223	14.0	16.0	2.0	0.57	0.03
E45/4518	Pajero	CSMH240	6.0	8.0	2.0	0.95	0.03
E45/4518	Pajero North	SHR014	3.0	5.0	2.0	7.28	
E45/4518	Pajero North	including	4.0	5.0	1.0	11.80	0.02
E45/4518	Wobbleys	SM2-7	18.0	20.0	2.0	0.54	
E45/4518	Wobbleys	YRB5066	39.0	40.0	1.0	1.01	0.03
E45/4518	Wobbleys	YRB5076	16.0	17.0	1.0	1.83	
	•						

Notes (Intersection Table above): Table 1 Intersections are composited from individual assays using the following criteria:

Intersection Interval = Nominal cut-off grade scenarios:

- ≥ 0.5 g/t gold which also satisfy a minimum down-hole intersection of ≥ 1 gmm; or
- \geq 1.0% copper which also satisfy a minimum down-hole interval of 1.0m.
- \geq 1.0 g/t silver which also satisfy a minimum down-hole intersection of \geq 5 gmm; or
- NB: In some instances, zones grading less than the cut-off grade/s have been included in calculating composites or to highlight mineralisation trends.
- No top-cutting has been applied to assay results for gold and/or copper,

ANTIPAMINERALS

- * Unless specified otherwise where a 30 g/t gold top-cut has been applied.
- Intersection true widths vary depending on the angle at which each individual drill hole intersects the mineralisation, and are estimated to generally be in the range of 40 to 70% of the downhole intersection interval.

Table 2: Chicken Ranch Area (E45/4867) and Pajero Area (E45/4518) Drill hole Collar Locations (MGA Zone 51/GDA 94)

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
CR363	E45/4867		1,020	7,608,264	427,427	257	38	215	-60	MIM	RC	44642
CR364	E45/4867		1,020	7,608,223	427,397	257	39	215	-60	MIM	RC	44642
CR365	E45/4867		1,020	7,608,183	427,367	257	43	215	-60	MIM	RC	44642
CR366	E45/4867		1,020	7,608,142	427,337	257	42	215	-60	MIM	RC	44642
CR367	E45/4867		1,020	7,608,122	427,322	257	45	215	-60	MIM	RC	44642
CR368	E45/4867		1,020	7,608,102	427,307	257	15	215	-60	MIM MIM	RC	44642
CR369 CR370	E45/4867		1,020	7,608,094 7,608,061	427,301	257 257	12 42	215	-60	MIM	RC RC	44642
CR370	E45/4867 E45/4867		1,010 1,300	7,608,061	427,277 427,345	257 257	78	215 215	-60 -60	MIM	RC RC	44642 44642
CR371	E45/4867		1,300	7,608,576	427,345	257	50	215	-60	MIM	RC	44642
CR373	E45/4867		1,300	7,608,495	427,285	257	50	215	-60	MIM	RC	44642
CR374	E45/4867		1,300	7,608,454	427,255	257	40	215	-60	MIM	RC	44642
CR375	E45/4867		1,290	7,608,414	427,225	257	37	215	-60	MIM	RC	44642
CR376	E45/4867		1,290	7,608,373	427,195	257	40	215	-60	MIM	RC	44642
CR377	E45/4867		1,290	7,608,333	427,165	257	37	215	-60	MIM	RC	44642
CR378	E45/4867		1,290	7,608,292	427,135	257	45	215	-60	MIM	RC	44642
CR379	E45/4867		1,290	7,608,252	427,105	257	40	215	-60	MIM	RC	44642
CR380	E45/4867		1,290	7,608,211	427,075	257	29	215	-60	MIM	RC	44642
CR381	E45/4867		1,570	7,608,726	427,142	257	50	215	-60	MIM	RC	44642
CR382	E45/4867		1,570	7,608,685	427,112	257	32	215	-60	MIM	RC	44642
CR383	E45/4867		1,570	7,608,645	427,082	257	34	215	-60	MIM	RC	44642
CR384	E45/4867		1,850	7,608,714	426,820	257	50	215	-60	MIM	RC	44642
CR385	E45/4867		1,850	7,608,673	426,790	257	44	215	-60	MIM	RC	44642
CR386	E45/4867		1,850	7,608,633	426,760	257	42	215	-60	MT BURGESS	RC	44642
CRA418 CRA419	E45/4867		4,450 4,450	7,609,814 7,609,947	424,691	257 257	59 77	0	-90 -90	MT BURGESS	AC AC	59445 59445
CRA419	E45/4867 E45/4867		4,450	7,609,947	424,788 424,882	257	76	0	-90	MT BURGESS	AC	59445
CRA421	E45/4867		4,450	7,610,074	424,975	257	52	0	-90	MT BURGESS	AC	59445
CRA422	E45/4867		4,460	7,610,332	425,071	257	40	0	-90	MT BURGESS	AC	59445
CRA423	E45/4867		4,450	7,610,124	424,916	257	75	33	-60	MT BURGESS	AC	59445
CRA424	E45/4867		4,450	7,610,083	424,886	257	41	33	-60	MT BURGESS	AC	59445
CRA425	E45/4867		4,510	7,610,170	424,888	257	52	33	-60	MT BURGESS	AC	59445
CRA426	E45/4867		4,510	7,610,133	424,860	257	73	33	-60	MT BURGESS	AC	59445
CRA427	E45/4867		4,510	7,610,105	424,840	257	71	33	-60	MT BURGESS	AC	59445
CRA428	E45/4867		4,510	7,610,073	424,816	257	19	33	-60	MT BURGESS	AC	59445
CRA429	E45/4867		4,510	7,610,066	424,811	257	33	33	-60	MT BURGESS	AC	59445
CRA430	E45/4867		4,400	7,610,126	424,981	257	27	33	-60	MT BURGESS	AC	59445
CRA431	E45/4867		4,400	7,610,094	424,957	257	59	33	-60	MT BURGESS	AC	59445
CRA432	E45/4867		4,400	7,610,061	424,933	257	59	33	-60	MT BURGESS	AC	59445
CRA433	E45/4867		4,400	7,610,029	424,909	257	58	33	-60	MT BURGESS MT BURGESS	AC	59445
CRA434	E45/4867		3,350	7,609,848	425,966	257	17	33	-60	MT BURGESS	AC	59445
CRA435 CRA436	E45/4867 E45/4867		3,350 3,350	7,609,734 7,609,603	425,882 425,785	257 257	77 71	0	-90 -90	MT BURGESS	AC AC	59445 59445
CRA436	E45/4867		3,340	7,609,603	425,785	257	50	0	-90	MT BURGESS	AC	59445
CRAC07	E45/4867		4,780	7,610,061	424,493	257	76	33	-60	NORMANDY	AC	47879
CRAC08	E45/4867		4,780	7,610,020	424,463	257	71	33	-60	NORMANDY	AC	47879
ECD2-1	E45/4867		2,640	7,606,879	424,526	257	25	0	-90	CARPENTARIA	RAB	32832
ECD2-1	E45/4867		2,640	7,606,879	424,526	257	25	0	-90	CARPENTARIA	RAB	32832
ECD2-2	E45/4867		2,450	7,606,740	424,645	257	36	0	-90	CARPENTARIA	RAB	32832
ECD2-2	E45/4867		2,450	7,606,740	424,645	257	36	0	-90	CARPENTARIA	RAB	32832
ECD2-3	E45/4867		2,220	7,606,578	424,786	257	25	0	-90	CARPENTARIA	RAB	32832
ECD2-3	E45/4867		2,220	7,606,578	424,786	257	25	0	-90	CARPENTARIA	RAB	32832
ECD2-5	E45/4867		1,600	7,606,222	425,213	257	19	0	-90	MIM	RAB	32832
ECD2-6	E45/4867		1,350	7,605,973	425,313	257	26	0	-90	CARPENTARIA	RAB	32832
ECD2-6	E45/4867		1,350	7,605,973	425,313	257	26	0	-90	CARPENTARIA NEWCREST	RAB	32832
YAC0828 YAC0829	E45/4867		9,640	7,614,555	422,353	257 257	6 15	0	-90 -90	NEWCREST	AC	57777 57777
YAC0829	E45/4867 E45/4867		9,360 5,850	7,614,632 7,612,560	422,733 425,171	257 257	15 3	0	-90 -90	NORMANDY	AC AC	57777 57777
YAC0907	E45/4867		4,240	7,612,360	425,171	257	6	0	-90	NORMANDY	AC	57777
YAC0908	E45/4867		4,120	7,610,963	425,943	257	6	0	-90	NORMANDY	AC	57777
YAC0909	E45/4867		3,990	7,610,773	425,936	257	6	0	-90	NORMANDY	AC	57777
YAC0910	E45/4867		4,480	7,610,743	425,353	257	6	0	-90	NORMANDY	AC	57777
YAC0911	E45/4867		3,770	7,610,977	426,339	257	3	0	-90	NORMANDY	AC	57777

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
YAC0912	E45/4867		3,940	7,611,196	426,313	257	6	0	-90	NORMANDY	AC	57777
YAC0914	E45/4867		3,410	7,610,958	426,734	257	6	0	-90	NORMANDY	AC	57777
YAC0915	E45/4867		3,260	7,610,741	426,749	257	6	0	-90	NORMANDY	AC	57777
YAC0916	E45/4867		3,130	7,610,559	426,760	257	9	0	-90	NORMANDY	AC	57777
YAC0917	E45/4867		2,990	7,610,335	426,744	257	12	0	-90	NORMANDY	AC	57777
YAC0918	E45/4867		2,380	7,609,976	427,167	257	12	0	-90	NORMANDY	AC	57777
YAC0919	E45/4867		2,600	7,610,203	427,095	257	8	0	-90	NORMANDY	AC	57777
YAC0920	E45/4867		2,680	7,610,366	427,127	257	9	0	-90	NORMANDY	AC	57777
YAC0921	E45/4867		2,810	7,610,580	427,141	257	6	0	-90	NORMANDY	AC	57777
YAC0922	E45/4867		2,930	7,610,731	427,117	257	6	0	-90	NORMANDY NORMANDY	AC	57777
YAC0923	E45/4867		2,310	7,610,357	427,537	257	3	0	-90	NORMANDY	AC	57777
YAC0972 YAC0973	E45/4867		4,780	7,610,368	424,729	257	12 6	0	-90	NORMANDY	AC	57777
YAC0973	E45/4867		4,910	7,610,555	424,721	257			-90	NORMANDY	AC	57777
YAC0974	E45/4867		4,390	7,610,331	425,143	257	24 51	0	-90	NORMANDY	AC	57777
YAC0973	E45/4867		4,270	7,610,165 7,610,146	425,152	257	18	0	-90 -90	NORMANDY	AC	57777
YAC0988	E45/4867 E45/4867		3,930	7,610,146	425,526 425,554	257 257	15	0	-90	NORMANDY	AC AC	57777 57777
YAC0989	E45/4867		3,790 3,650	7,609,768	425,566	257	21	0	-90	NORMANDY	AC	57777
YAC1000	E45/4867		1,880	7,607,618	425,955	257	18	0	-90	NORMANDY	AC	57777
YAC1001	E45/4867		1,990	7,607,018	425,933	257	42	0	-90	NORMANDY	AC	57777
YAC1002	E45/4867		2,120	7,607,703	425,940	257	21	0	-90	NORMANDY	AC	57777
YAC1003	E45/4867		2,310	7,608,167	425,881	257	18	0	-90	NORMANDY	AC	57777
YAC1004	E45/4867		2,370	7,608,350	425,950	257	21	0	-90	NORMANDY	AC	57777
AC2267	E45/4867		590	7,607,761	427,536	257	40	0	-90	NORMANDY	AC	57777
/AC2268	E45/4867		850	7,608,161	427,536	257	34	0	-90	NORMANDY	AC	57777
/AC2269	E45/4867		1,120	7,608,561	427,531	257	29	0	-90	NORMANDY	AC	57777
/AC2270	E45/4867		1,390	7,608,960	427,528	257	22	0	-90	NORMANDY	AC	57777
AC2271	E45/4867		2,000	7,609,361	427,139	257	18	0	-90	NORMANDY	AC	57777
'AC2272	E45/4867		1,740	7,608,961	427,136	257	9	0	-90	NORMANDY	AC	57777
/AC2273	E45/4867		1,470	7,608,561	427,138	257	27	0	-90	NORMANDY	AC	57777
/AC2274	E45/4867		1,200	7,608,161	427,136	257	40	0	-90	NORMANDY	AC	57777
/AC2275	E45/4867		950	7,607,763	427,127	257	41	0	-90	NORMANDY	AC	57777
/AC2278	E45/4867		1,290	7,607,761	426,732	257	37	0	-90	NORMANDY	AC	57777
/AC2279	E45/4867		1,550	7,608,161	426,738	257	27	0	-90	NORMANDY	AC	57777
/AC2280	E45/4867		1,820	7,608,558	426,736	257	32	0	-90	NORMANDY	AC	57777
/AC2281	E45/4867		2,090	7,608,963	426,733	257	27	0	-90	NORMANDY	AC	57777
YAC2282	E45/4867		2,360	7,609,362	426,730	257	15	0	-90	NORMANDY	AC	57777
YAC2283	E45/4867		2,300	7,608,759	426,336	257	21	0	-90	NORMANDY	AC	57777
YAC2284	E45/4867		2,040	7,608,361	426,336	257	27	0	-90	NORMANDY	AC	57777
/AC2285	E45/4867		1,780	7,607,961	426,333	257	27	0	-90	NORMANDY	AC	57777
/RB2498	E45/4867		5,790	7,611,378	424,345	257	11	0	-90	NEWCREST	RAB	60195
/RB2499	E45/4867		5,650	7,611,164	424,338	257	11	0	-90	MT BURGESS	RAB	60195
'RB2500	E45/4867		5,520	7,610,974	424,350	257	11	0	-90	MT BURGESS	RAB	60195
'RB2501	E45/4867		5,040	7,610,766	424,736	257	8	0	-90	MT BURGESS	RAB	60195
′RB2502	E45/4867		5,170	7,610,961	424,736	257	11	0	-90	MT BURGESS	RAB	60195
/RB2503	E45/4867		5,310	7,611,172	424,735	257	14	0	-90	MT BURGESS	RAB	60195
RB2506	E45/4867		4,160	7,610,589	425,609	257	11	0	-90	MT BURGESS	RAB	60195
RB2507	E45/4867		3,860	7,610,564	425,930	257	20	0	-90	MT BURGESS	RAB	60195
'RB2508	E45/4867		3,740	7,610,395	425,939	257	20	0	-90	MT BURGESS	RAB	60195
(RB2509	E45/4867		3,390	7,610,425	426,359	257	14	0	-90	MT BURGESS	RAB	60195
'RB2510	E45/4867		1,770	7,609,520	427,520	257	26	0	-90	MT BURGESS	RAB	60195
(RB2512	E45/4867		2,130	7,609,561	427,139	257	15	0	-90	MT BURGESS MT BURGESS	RAB	60195
'RB2513 'RB2514	E45/4867		2,260	7,609,740	427,131	257	14	0	-90	MT BURGESS	RAB	60195
RB2514 RB2515	E45/4867		2,750	7,609,961	426,736	257	23	0	-90	MT BURGESS	RAB	60195
RB2516	E45/4867		2,620	7,609,761	426,738	257	26	0	-90	MT BURGESS	RAB	60195
RB2516	E45/4867		3,100	7,609,961	426,338	257 257	17	0	-90 -90	MT BURGESS	RAB	60195
RB2517	E45/4867 E45/4867		3,230 3,590	7,610,160	426,342	257 257	11 32	0	-90 -90	MT BURGESS	RAB	60195 60195
RB2519	E45/4867 E45/4867		4,070	7,610,163 7,610,361	425,933 425,536	257	32	0	-90 -90	MT BURGESS	RAB RAB	60195
RB2520	E45/4867		4,670	7,610,361	425,336	257	23	0	-90	MT BURGESS	RAB	60195
RB2521	E45/4867		4,560	7,610,764	425,128	257	26	0	-90	MT BURGESS	RAB	60195
RB2523	E45/4867		6,130	7,610,364	423,132	257	14	0	-90	NEWCREST	RAB	60195
CRA409	E45/4867	Big	5,560	7,611,338	423,939	257	64	0	-90	MT BURGESS	AC	59445
CRA410	E45/4867	Banana Big	5,570	7,610,803	424,222	257	77	0	-90	MT BURGESS	AC	59445
	·	Banana	•						00	MT BLIDGESS		
CRA411 'AC0948	E45/4867 E45/4867	Big Banana Big	5,570 5,410	7,610,758 7,610,785	424,128 424,322	257 257	57 9	0	-90 -90	MT BURGESS NORMANDY	AC AC	59445 57777

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
CR1	E45/4867	Chicken Ranch	6,090	7,611,927	424,422	257	42	213	-60	MIM	RAB	34762
CR10	E45/4867	Chicken Ranch	6,580	7,612,195	424,066	257	32	213	-60	MIM	RAB	34762
CR100	E45/4867	Chicken Ranch	6,190	7,611,993	424,357	257	60	213	-60	MIM	RAB	38092
CR101	E45/4867	Chicken Ranch	6,190	7,612,066	424,411	257	60	33	-60	MIM	RAB	38092
CR102	E45/4867	Chicken Ranch	6,190	7,612,115	424,447	257	60	213	-60	MIM	RAB	38092
CR103	E45/4867	Chicken Ranch	6,130	7,612,085	424,487	257	60	213	-60	MIM	RAB	38092
CR104	E45/4867	Chicken Ranch	6,090	7,611,955	424,442	257	70	213	-60	MIM	RAB	38092
CR105	E45/4867	Chicken Ranch	6,520	7,612,104	424,063	257	60	33	-60	MIM	RAB	38092
CR106	E45/4867	Chicken Ranch	6,520	7,612,145	424,093	257	60	213	-60	MIM	RAB	38092
CR107	E45/4867	Chicken Ranch	6,630	7,612,152	423,973	257	70	33	-60	MIM	RAB	38092
CR108	E45/4867	Chicken Ranch	6,630	7,612,205	424,012	257	60	213	-60	MIM	RAB	38092
CR109	E45/4867	Chicken Ranch	6,580	7,612,317	424,157	257	50	213	-60	MIM	RAB	38092
CR11	E45/4867	Chicken Ranch	6,580	7,612,183	424,056	257	57	213	-60	MIM	RAB	34762
CR110	E45/4867	Chicken Ranch	6,080	7,612,063	424,534	257	60	213	-60	MIM	RAB	38092
CR111	E45/4867	Chicken	5,910	7,611,981	424,661	257	60	213	-60	MIM	RAB	38092
CR112	E45/4867	Ranch Chicken	5,910	7,611,815	424,538	257	50	213	-60	MIM	RAB	38092
CR113	E45/4867	Ranch Chicken	5,910	7,611,835	424,553	257	50	213	-60	MIM	RAB	38092
CR114	E45/4867	Ranch Chicken	5,910	7,611,855	424,568	257	50	213	-60	MIM	RAB	38092
CR115	E45/4867	Ranch Chicken	5,910	7,611,876	424,583	257	50	213	-60	MIM	RAB	38092
CR116	E45/4867	Ranch Chicken	6,020	7,611,915	424,487	257	50	213	-60	MIM	RAB	38092
CR117	E45/4867	Ranch Chicken	6,020	7,611,936	424,502	257	50	213	-60	MIM	RAB	38092
CR118	E45/4867	Ranch Chicken	6,020	7,612,033	424,574	257	60	213	-60	MIM	RAB	38092
CR119	E45/4867	Ranch Chicken	6,130	7,611,955	424,391	257	50	213	-60	MIM	RAB	38092
CR12	E45/4867	Ranch Chicken	6,570	7,612,158	424,038	257	47	213	-60	MIM	RAB	34762
CR120	E45/4867	Ranch Chicken	6,130	7,611,975	424,406	257	50	213	-60	MIM	RAB	38092
CR121	E45/4867	Ranch Chicken	6,130	7,611,996	424,421	257	50	213	-60	MIM	RAB	38092
CR122	E45/4867	Ranch Chicken	6,240	7,611,995	424,295	257	50	213	-60	MIM	RAB	38092
CR123	E45/4867	Ranch Chicken	6,240	7,612,015	424,310	257	50	213	-60	MIM	RAB	38092
CR124	E45/4867	Ranch Chicken	6,240	7,612,035	424,325	257	50	213	-60	MIM	RAB	38092
CR125	E45/4867	Ranch Chicken	6,240	7,612,145	424,406	257	60	213	-60	MIM	RAB	38092
CR126	E45/4867	Ranch Chicken	6,300	7,612,175	424,366	257	60	213	-60	MIM	RAB	38092
CR127	E45/4867	Ranch Chicken	6,410	7,612,065	424,159	257	50	213	-60	MIM	RAB	38092
CR128	E45/4867	Ranch Chicken	6,410	7,612,085	424,174	257	50	213	-60	MIM	RAB	38092
CR129	E45/4867	Ranch Chicken	6,410	7,612,105	424,189	257	50	213	-60	MIM	RAB	38092
CR13	E45/4867	Ranch Chicken	6,580	7,612,140	424,024	257	57	213	-60	MIM	RAB	34762
CR130	E45/4867	Ranch Chicken	6,410	7,612,235	424,285	257	60	213	-60	MIM	RAB	38092
CR138	E45/4867	Ranch Chicken	6,570	7,611,709	423,707	257	50	213	-60	MIM	RAB	38092
CR139	E45/4867	Ranch Chicken	6,570	7,611,750	423,737	257	50	213	-60	MIM	RAB	38092
CR14	E45/4867	Ranch Chicken	6,570	7,612,114	424,013	257	41	213	-60	MIM	RAB	34762
CR140	E45/4867	Ranch Chicken	6,570	7,611,790	423,767	257	50	213	-60	MIM	RAB	38092
CR141	E45/4867	Ranch Chicken	6,570	7,611,831	423,797	257	50	213	-60	MIM	RAB	38092
CR142	E45/4867	Ranch Chicken	6,570	7,611,863	423,821	257	50	213	-60	MIM	RAB	38092
CR143	E45/4867	Ranch Chicken	6,850	7,612,264	423,805	257	50	213	-60	MIM	RAB	38092
CR144	E45/4867	Ranch Chicken	6,850	7,612,284	423,820	257	50	213	-60	MIM	RAB	38092
CR145	E45/4867	Ranch Chicken	6,850	7,612,305	423,835	257	50	213	-60	MIM	RAB	38092
		Ranch Chicken	6,850	7,612,325	423,850	257	50	213	-60	MIM		38092

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
CR147	E45/4867	Ranch Chicken	7,120	7,612,090	423,362	257	50	213	-60	MIM	RAB	38092
CR148	E45/4867	Ranch Chicken	7,120	7,612,110	423,377	257	50	213	-60	MIM	RAB	38092
CR149	E45/4867	Ranch Chicken	7,120	7,612,131	423,392	257	50	213	-60	MIM	RAB	38092
CR15	E45/4867	Ranch Chicken	6,570	7,612,100	423,997	257	38	213	-60	MIM	RAB	34762
CR150	E45/4867	Ranch Chicken	7,120	7,612,151	423,407	257	50	213	-60	MIM	RAB	38092
CR151	E45/4867	Ranch Chicken	7,120	7,612,171	423,422	257	50	213	-60	MIM	RAB	38092
CR152	E45/4867	Ranch Chicken	7,120	7,612,191	423,437	257	50	213	-60	MIM	RAB	38092
CR153	E45/4867	Ranch Chicken	7,120	7,612,212	423,452	257	50	213	-60	MIM	RAB	38092
CR154	E45/4867	Ranch Chicken	7,120	7,612,232	423,467	257	50	213	-60	MIM	RAB	38092
CR155	E45/4867	Ranch Chicken	7,130	7,612,252	423,482	257	50	213	-60	MIM	RAB	38092
CR156	E45/4867	Ranch Chicken	7,130	7,612,272	423,497	257	50	213	-60	MIM	RAB	38092
CR157	E45/4867	Ranch Chicken	7,130	7,612,293	423,512	257	50	213	-60	MIM	RAB	38092
CR158	E45/4867	Ranch Chicken	7,130	7,612,313	423,527	257	50	213	-60	MIM	RAB	38092
CR159	E45/4867	Ranch Chicken	7,130	7,612,333	423,542	257	50	213	-60	MIM	RAB	38092
CR16	E45/4867	Ranch Chicken	6,570	7,612,085	423,983	257	42	213	-60	MIM	RAB	34762
CR160	E45/4867	Ranch Chicken	7,130	7,612,353	423,557	257	50	213	-60	MIM	RAB	38092
CR161	E45/4867	Ranch Chicken	7,130	7,612,374	423,577	257	50	213	-60	MIM	RAB	38092
		Ranch Chicken	·		·				-60	MIM		
CR162	E45/4867	Ranch	7,130	7,612,394	423,587	257	50	213		MIM	RAB	38092
CR163	E45/4867	Ranch	7,130	7,612,414	423,602	257	50	213	-60		RAB	38092
CR164	E45/4867	Chicken Ranch	7,130	7,612,434	423,617	257	50	213	-60	MIM	RAB	38092
CR165	E45/4867	Chicken Ranch	7,130	7,612,455	423,632	257	50	213	-60	MIM	RAB	38092
CR166	E45/4867	Chicken Ranch	7,130	7,612,475	423,647	257	50	213	-60	MIM	RAB	38092
CR167	E45/4867	Chicken Ranch	7,130	7,612,495	423,662	257	50	213	-60	MIM	RAB	38092
CR17	E45/4867	Chicken Ranch	7,130	7,612,819	423,902	257	29	213	-60	MIM	RAB	34762
CR176	E45/4867	Chicken Ranch	5,960	7,611,865	424,513	257	60	213	-60	MIM	RAB	38092
CR177	E45/4867	Chicken Ranch	5,960	7,611,885	424,528	257	50	213	-60	MIM	RAB	38092
CR178	E45/4867	Chicken Ranch	5,960	7,611,906	424,543	257	50	213	-60	MIM	RAB	38092
CR179	E45/4867	Chicken Ranch	5,350	7,611,555	424,973	257	50	213	-60	NORMANDY	RAB	65269
CR18	E45/4867	Chicken Ranch	7,130	7,612,807	423,893	257	11	213	-60	MIM	RAB	34762
CR180	E45/4867	Chicken Ranch	5,350	7,611,535	424,958	257	50	213	-60	NORMANDY	RAB	65269
CR181	E45/4867	Chicken Ranch	5,350	7,611,515	424,943	257	72	213	-60	NORMANDY	RAB	65269
CR182	E45/4867	Chicken Ranch	5,350	7,611,487	424,922	257	51	213	-60	NORMANDY	RAB	65269
CR183	E45/4867	Chicken Ranch	5,350	7,611,466	424,907	257	50	213	-60	NORMANDY	RAB	65269
CR184	E45/4867	Chicken Ranch	5,350	7,611,446	424,892	257	50	213	-60	NORMANDY	RAB	65269
CR185	E45/4867	Chicken	5,350	7,611,426	424,877	257	50	213	-60	NORMANDY	RAB	65269
CR186	E45/4867	Ranch Chicken	5,470	7,611,615	424,892	257	50	213	-60	NORMANDY	RAB	65269
CR187	E45/4867	Ranch Chicken	5,470	7,611,595	424,877	257	50	213	-60	NORMANDY	RAB	65269
CR188	E45/4867	Ranch Chicken	5,470	7,611,575	424,862	257	50	213	-60	NORMANDY	RAB	65269
CR189	E45/4867	Ranch Chicken	5,460	7,611,555	424,847	257	50	213	-60	NORMANDY	RAB	65269
CR19	E45/4867	Ranch Chicken	7,130	7,612,803	423,890	257	54	213	-60	MIM	RAB	34762
CR190	E45/4867	Ranch Chicken	5,460	7,611,534	424,832	257	50	213	-60	NORMANDY	RAB	65269
CR191	E45/4867	Ranch Chicken	5,460	7,611,514	424,817	257	50	213	-60	NORMANDY	RAB	65269
CR192	E45/4867	Ranch Chicken	5,460	7,611,494	424,802	257	50	213	-60	NORMANDY	RAB	65269
CR193	E45/4867	Ranch Chicken	5,520	7,611,645	424,852	257	50	213	-60	NORMANDY	RAB	65269
CR194	E45/4867	Ranch Chicken	5,520	7,611,625	424,837	257	50	213	-60	NORMANDY	RAB	65269
CN134	L43/400/	Ranch	3,320	7,011,023	424,03/	237	30	213	-00		NAD	03203

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
CR195	E45/4867	Chicken Ranch	5,520	7,611,605	424,822	257	50	213	-60	NORMANDY	RAB	65269
CR196	E45/4867	Chicken Ranch	5,520	7,611,585	424,807	257	50	213	-60	NORMANDY	RAB	65269
CR197	E45/4867	Chicken Ranch	5,520	7,611,564	424,792	257	50	213	-60	NORMANDY	RAB	65269
CR198	E45/4867	Chicken Ranch	5,520	7,611,544	424,777	257	50	213	-60	NORMANDY	RAB	65269
CR199	E45/4867	Chicken Ranch	5,580	7,611,655	424,796	257	50	213	-60	NORMANDY	RAB	65269
CR2	E45/4867	Chicken Ranch	6,080	7,611,911	424,410	257	35	213	-60	MIM	RAB	34762
CR20	E45/4867	Chicken Ranch	7,130	7,612,781	423,874	257	42	213	-60	MIM	RAB	34762
CR200	E45/4867	Chicken Ranch	5,580	7,611,635	424,781	257	50	213	-60	NORMANDY	RAB	65269
CR201	E45/4867	Chicken Ranch	5,580	7,611,615	424,766	257	50	213	-60	NORMANDY	RAB	65269
CR202	E45/4867	Chicken Ranch	5,580	7,611,594	424,751	257	72	213	-60	NORMANDY	RAB	65269
CR203	E45/4867	Chicken Ranch	5,580	7,611,574	424,736	257	50	213	-60	NORMANDY	RAB	65269
CR204	E45/4867	Chicken Ranch	5,630	7,611,726	424,786	257	50	213	-60	MIM	RAB	65268
CR205	E45/4867	Chicken Ranch	5,630	7,611,705	424,771	257	50	213	-60	MIM	RAB	65268
CR206	E45/4867	Chicken	5,630	7,611,685	424,756	257	50	213	-60	MIM	RAB	65268
CR207	E45/4867	Ranch Chicken	5,640	7,611,671	424,733	257	90	213	-60	MIM	RAB	65268
CR208	E45/4867	Ranch Chicken	5,640	7,611,651	424,718	257	50	213	-60	MIM	RAB	65268
CR209	E45/4867	Ranch Chicken	5,630	7,611,624	424,711	257	69	213	-60	MIM	RAB	65268
CR21	E45/4867	Ranch Chicken	7,130	7,612,764	423,862	257	36	213	-60	MIM	RAB	34762
CR210	E45/4867	Ranch Chicken	5,630	7,611,604	424,696	257	50	213	-60	MIM	RAB	65268
CR211	E45/4867	Ranch Chicken	5,690	7,611,756	424,745	257	50	213	-60	MIM	RAB	65268
CR212	E45/4867	Ranch Chicken	5,690	7,611,735	424,730	257	50	213	-60	MIM	RAB	65268
CR213	E45/4867	Ranch Chicken	5,690	7,611,715	424,715	257	53	213	-60	MIM	RAB	65268
CR214	E45/4867	Ranch Chicken	5,690	7,611,695	424,700	257	50	213	-60	MIM	RAB	65268
CR215	E45/4867	Ranch Chicken	5,690	7,611,675	424,685	257	51	213	-60	MIM	RAB	65268
CR216	E45/4867	Ranch Chicken	5,690	7,611,654	424,670	257	80	213	-60	MIM	RAB	65268
CR217	E45/4867	Ranch Chicken	5,690	7,611,634	424,655	257	52	213	-60	MIM	RAB	65268
CR218	E45/4867	Ranch Chicken	5,740	7,611,725	424,660	257	50	213	-60	MIM	RAB	65268
CR219	E45/4867	Ranch Chicken	5,740	7,611,705	424,645	257	37	213	-60	MIM	RAB	65268
CR22	E45/4867	Ranch Chicken	7,130	7,612,749	423,851	257	51	213	-60	MIM	RAB	34762
CR220	E45/4867	Ranch Chicken	5,740	7,611,684	424,630	257	84	213	-60	MIM	RAB	65268
CR221	E45/4867	Ranch Chicken	5,740	7,611,664	424,615	257	30	213	-60	MIM	RAB	65268
CR222	E45/4867	Ranch Chicken	5,800	7,611,714	424,589	257	80	213	-60	MIM	RAB	65268
CR223	E45/4867	Ranch Chicken	5,800	7,611,694	424,574	257	90	213	-60	MIM	RAB	65268
CR224	E45/4867	Ranch Chicken	5,850	7,611,744	424,549	257	50	213	-60	MIM	RAB	65268
CR225	E45/4867	Ranch Chicken	5,850	7,611,724	424,534	257	26	213	-60	MIM	RAB	65268
CR225B	E45/4867	Ranch Chicken	5,850	7,611,716	424,528	257	43	213	-60	MIM	RAB	65268
CR226	E45/4867	Ranch Chicken	6,300	7,612,061	424,282	257	50	213	-60	MIM	RAB	65268
CR227	E45/4867	Ranch Chicken	6,300	7,612,053	424,276	257	50	213	-60	MIM	RAB	65268
CR228	E45/4867	Ranch Chicken	6,300	7,612,037	424,264	257	50	213	-60	MIM	RAB	65268
CR229	E45/4867	Ranch Chicken	6,300	7,612,029	424,258	257	50	213	-60	MIM	RAB	65268
CR23	E45/4867	Ranch Chicken	7,130	7,612,729	423,836	257	39	213	-60	MIM	RAB	34762
CR230	E45/4867	Ranch Chicken	6,300	7,612,723	424,246	257	50	213	-60	MIM	RAB	65268
CR231	E45/4867	Ranch	6,310	7,612,013		257	50	213	-60	MIM	RAB	65268
CR231	E45/4867 E45/4867	Ranch	6,310	7,612,067	424,274 424,268	257	50	213	-60	MIM	RAB	65268
	·	Ranch								MIM		
CR233	E45/4867	Ranch	6,310	7,612,051	424,262	257	50	213	-60	MIM	RAB	65268
CR234	E45/4867	CHICKEH	6,310	7,612,043	424,256	257	50	213	-60	IVIIIVI	RAB	65268

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
CR235	E45/4867	Ranch Chicken	6,310	7,612,035	424,250	257	50	213	-60	MIM	RAB	65268
CR236	E45/4867	Ranch Chicken	6,310	7,612,027	424,244	257	50	213	-60	MIM	RAB	65268
CR237	E45/4867	Ranch Chicken	6,310	7,612,019	424,238	257	50	213	-60	MIM	RAB	65268
CR238	E45/4867	Ranch Chicken	6,310	7,612,011	424,232	257	50	213	-60	MIM	RAB	65268
CR239	E45/4867	Ranch Chicken	6,320	7,612,073	424,266	257	50	213	-60	MIM	RAB	65268
CR24	E45/4867	Ranch Chicken	7,130	7,612,617	423,752	257	60	213	-60	MIM	RAB	34762
CR240	E45/4867	Ranch Chicken	6,320	7,612,065	424,260	257	50	213	-60	MIM	RAB	65268
CR241	E45/4867	Ranch Chicken	6,320	7,612,057	424,254	257	50	213	-60	MIM	RAB	65268
CR242	E45/4867	Ranch Chicken	6,320	7,612,049	424,248	257	50	213	-60	MIM	RAB	65268
CR243	E45/4867	Ranch Chicken	6,320	7,612,041	424,242	257	50	213	-60	MIM	RAB	65268
CR244	E45/4867	Ranch Chicken	6,320	7,612,033	424,236	257	50	213	-60	MIM	RAB	65268
CR245	E45/4867	Ranch Chicken	6,320	7,612,025	424,230	257	50	213	-60	MIM	RAB	65268
CR246	E45/4867	Ranch Chicken	6,320	7,612,017	424,224	257	50	213	-60	MIM	RAB	65268
CR247	E45/4867	Ranch Chicken	6,330	7,612,079	424,258	257	50	213	-60	MIM	RAB	65268
CR248	E45/4867	Ranch Chicken	6,330	7,612,071	424,252	257	50	213	-60	MIM	RAB	65268
CR249	E45/4867	Ranch Chicken	6,330	7,612,063	424,246	257	45	213	-60	MIM	RAB	65268
CR25	E45/4867	Ranch Chicken	7,130	7,612,592	423,734	257	30	213	-60	MIM	RAB	34762
CR250	E45/4867	Ranch Chicken	6,330	7,612,055	424,240	257	50	213	-60	MIM	RAB	65268
CR251	E45/4867	Ranch Chicken	6,330	7,612,033	·	257	50	213	-60	MIM	RAB	65268
CR251		Ranch Chicken	•		424,234			213		MIM		
	E45/4867	Ranch Chicken	6,330	7,612,039	424,228	257	50		-60	MIM	RAB	65268
CR253	E45/4867	Ranch Chicken	6,330	7,612,031	424,222	257	50	213	-60	MIM	RAB	65268
CR254	E45/4867	Ranch	6,330	7,612,023	424,216	257	50	213	-60	MIM	RAB	65268
CR255	E45/4867	Ranch	6,340	7,612,085	424,250	257	50	213	-60		RAB	65268
CR256	E45/4867	Chicken Ranch	6,340	7,612,077	424,244	257	50	213	-60	MIM	RAB	65268
CR257	E45/4867	Chicken Ranch	6,340	7,612,069	424,238	257	47	213	-60	MIM	RAB	65268
CR258	E45/4867	Chicken Ranch	6,340	7,612,061	424,232	257	50	213	-60	MIM	RAB	65268
CR259	E45/4867	Chicken Ranch	6,340	7,612,053	424,226	257	41	213	-60	MIM	RAB	65268
CR26	E45/4867	Chicken Ranch	7,130	7,612,580	423,725	257	21	213	-60	MIM	RAB	34762
CR260	E45/4867	Chicken Ranch	6,340	7,612,045	424,220	257	54	213	-60	MIM	RAB	65268
CR261	E45/4867	Chicken Ranch	6,340	7,612,037	424,214	257	54	213	-60	MIM	RAB	65268
CR262	E45/4867	Chicken Ranch	6,340	7,612,029	424,208	257	50	213	-60	MIM	RAB	65268
CR263	E45/4867	Chicken Ranch	6,350	7,612,083	424,235	257	50	213	-60	MIM	RAB	65268
CR264	E45/4867	Chicken Ranch	6,350	7,612,075	424,229	257	50	213	-60	MIM	RAB	65268
CR265	E45/4867	Chicken Ranch	6,350	7,612,059	424,217	257	50	213	-60	MIM	RAB	65268
CR266	E45/4867	Chicken Ranch	6,350	7,612,051	424,211	257	50	213	-60	MIM	RAB	65268
CR267	E45/4867	Chicken Ranch	6,350	7,612,043	424,205	257	50	213	-60	MIM	RAB	65268
CR268	E45/4867	Chicken Ranch	6,350	7,612,035	424,199	257	50	213	-60	MIM	RAB	65268
CR269	E45/4867	Chicken Ranch	4,360	7,610,995	425,687	257	50	213	-60	NORMANDY	RAB	65269
CR27	E45/4867	Chicken Ranch	7,130	7,612,572	423,719	257	54	213	-60	MIM	RAB	34762
CR270	E45/4867	Chicken Ranch	4,360	7,611,036	425,717	257	50	213	-60	NORMANDY	RAB	65269
CR271	E45/4867	Chicken Ranch	4,360	7,611,076	425,747	257	50	213	-60	NORMANDY	RAB	65269
CR272	E45/4867	Chicken Ranch	4,360	7,611,117	425,777	257	50	213	-60	NORMANDY	RAB	65269
CR273	E45/4867	Chicken Ranch	4,360	7,611,157	425,807	257	50	213	-60	NORMANDY	RAB	65269
CR274	E45/4867	Chicken	4,360	7,611,198	425,837	257	50	213	-60	NORMANDY	RAB	65269
CR275	E45/4867	Ranch Chicken Ranch	4,360	7,611,238	425,867	257	50	213	-60	NORMANDY	RAB	65269

CR288 E CR289 E CR290 E CR290 E CR291 E CR292 E CR293 E CR294 E CR295 E CR3 E CR30 E CR31 E CR32 E CR32 E	E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867	Chicken Ranch	7,130 8,790 8,790 7,130 8,790 8,790 8,790 8,790 8,790 8,790 6,020	7,612,550 7,613,314 7,613,355 7,612,528 7,613,395 7,613,436 7,613,476 7,613,517 7,613,557 7,613,598	423,703 422,387 422,417 423,687 422,447 422,477 422,507 422,537 422,567	257 257 257 257 257 257 257 257	54 50 50 48 50 50	213 213 213 213 213 213	-60 -60 -60 -60	MIM MIM MIM MIM	RAB RAB RAB RAB	34762 65268 65268 34762
CR289 E CR29 E CR290 E CR291 E CR292 E CR293 E CR294 E CR295 E CR3 E CR30 E CR31 E CR32 E CR32 E	E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867	Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch	8,790 7,130 8,790 8,790 8,790 8,790 8,790 8,790	7,613,355 7,612,528 7,613,395 7,613,436 7,613,476 7,613,517 7,613,557	422,417 423,687 422,447 422,477 422,507 422,537	257 257 257 257 257	50 48 50	213 213 213	-60 -60	MIM	RAB RAB	65268
CR29 E CR290 E CR291 E CR292 E CR293 E CR294 E CR295 E CR3 E CR30 E CR31 E CR32 E CR32 E	E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867	Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch	7,130 8,790 8,790 8,790 8,790 8,790 8,790	7,612,528 7,613,395 7,613,436 7,613,476 7,613,517 7,613,557	423,687 422,447 422,477 422,507 422,537	257 257 257 257	48 50	213 213	-60	MIM	RAB	
CR290 E CR291 E CR292 E CR293 E CR294 E CR295 E CR3 E CR30 E CR31 E CR32 E CR32 E	E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867	Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch	8,790 8,790 8,790 8,790 8,790 8,790	7,613,395 7,613,436 7,613,476 7,613,517 7,613,557	422,447 422,477 422,507 422,537	257 257 257	50	213				34762
CR291 E CR292 E CR293 E CR294 E CR295 E CR3 E CR30 E CR31 E CR32 E CR32 E	E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867	Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken	8,790 8,790 8,790 8,790 8,790	7,613,436 7,613,476 7,613,517 7,613,557	422,477 422,507 422,537	257 257			-60	MIM	RAR	
CR292 E CR293 E CR294 E CR295 E CR3 E CR30 E CR31 E CR32 E CR32 E CR33 E	E45/4867 E45/4867 E45/4867 E45/4867 E45/4867 E45/4867	Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken	8,790 8,790 8,790 8,790	7,613,476 7,613,517 7,613,557	422,507 422,537	257	50	213			ווירט	65268
CR293 E CR294 E CR295 E CR3 E CR30 E CR31 E CR32 E CR32 E CR33 E	E45/4867 E45/4867 E45/4867 E45/4867 E45/4867	Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken	8,790 8,790 8,790	7,613,517 7,613,557	422,537				-60	MIM	RAB	65268
CR294 E CR295 E CR3 E CR30 E CR31 E CR32 E CR32 E CR33 E	E45/4867 E45/4867 E45/4867 E45/4867	Chicken Ranch Chicken Ranch Chicken Ranch Chicken Ranch Chicken	8,790 8,790	7,613,557	•	257	50	213	-60	MIM	RAB	65268
CR295 E CR3 E CR30 E CR31 E CR32 E CR32 E CR33 E	E45/4867 E45/4867 E45/4867	Chicken Ranch Chicken Ranch Chicken Ranch Chicken	8,790		422,567		50	213	-60	MIM	RAB	65268
CR3 E CR30 E CR31 E CR32 E CR33 E	E45/4867 E45/4867 E45/4867	Chicken Ranch Chicken Ranch Chicken	•	7,613,598		257	50	213	-60	MIM	RAB	65268
CR30 E CR31 E CR32 E CR33 E	E45/4867 E45/4867	Chicken Ranch Chicken	6,020		422,597	257	50	213	-60	MIM	RAB	65268
CR31 E CR32 E CR33 E	E45/4867	Chicken		7,611,893	424,475	257	40	213	-60	MIM	RAB	34762
CR32 E		Kanch	7,690	7,613,241	423,587	257	50	213	-60	MIM	RAB	34762
CR33 E	F45/4867	Chicken	7,690	7,613,221	423,573	257	27	213	-60	MIM	RAB	34762
	L7J/70U/	Ranch Chicken	7,690	7,613,211	423,566	257	40	213	-60	MIM	RAB	65268
CR34 E	E45/4867	Ranch Chicken	7,690	7,613,195	423,554	257	40	213	-60	MIM	RAB	34762
	E45/4867	Ranch Chicken	7,690	7,613,179	423,542	257	32	213	-60	MIM	RAB	34762
CR35 E	E45/4867	Ranch Chicken	7,690	7,613,166	423,532	257	48	213	-60	MIM	RAB	34762
CR36 E	E45/4867	Ranch Chicken	7,690	7,613,147	423,518	257	34	213	-60	MIM	RAB	34762
CR37 E	E45/4867	Ranch Chicken	8,220	7,613,472	423,157	257	34	33	-60	MIM	RAB	34762
CR38 E	E45/4867	Ranch Chicken	8,220	7,613,512	423,187	257	30	213	-60	MIM	RAB	34762
CR39 E	E45/4867	Ranch Chicken	8,220	7,613,500	423,178	257	35	213	-60	MIM	RAB	34762
CR4 E	E45/4867	Ranch Chicken	6,020	7,611,877	424,463	257	45	213	-60	MIM	RAB	34762
CR40 E	E45/4867	Ranch Chicken	8,220	7,613,471	423,156	257	40	213	-60	MIM	RAB	34762
CR41 E	E45/4867	Ranch Chicken	8,220	7,613,455	423,144	257	34	213	-60	MIM	RAB	34762
CR42 E	E45/4867	Ranch Chicken	8,220	7,613,441	423,134	257	41	213	-60	MIM	RAB	34762
CR43 E	E45/4867	Ranch Chicken	8,220	7,613,425	423,122	257	32	213	-60	MIM	RAB	65268
CR44 E	E45/4867	Ranch Chicken	8,220	7,613,412	423,112	257	49	213	-60	MIM	RAB	34762
CR45 E	E45/4867	Ranch Chicken	8,220	7,613,393	423,098	257	43	213	-60	MIM	RAB	34762
CR46 E	E45/4867	Ranch Chicken	6,570	7,612,169	424,048	257	50	213	-60	MIM	RAB	34762
CR47 E	E45/4867	Ranch Chicken	6,570	7,612,158	424,043	257	30	213	-60	MIM	RAB	34762
CR48 E	E45/4867	Ranch Chicken	6,470	7,612,135	424,146	257	48	213	-60	MIM	RAB	34762
CR49 E	E45/4867	Ranch Chicken	6,460	7,612,115	424,132	257	33	213	-60	MIM	RAB	34762
	E45/4867	Ranch Chicken	6,020	7,611,859	424,450	257	42	213	-60	MIM	RAB	34762
	E45/4867	Ranch Chicken	6,460	7,612,100	424,125	257	38	213	-60	MIM	RAB	34762
	E45/4867	Ranch Chicken	6,460	7,612,087	424,114	257	51	213	-60	MIM	RAB	34762
	E45/4867	Ranch Chicken	6,460	7,612,062	424,097	257	48	213	-60	MIM	RAB	34762
	E45/4867	Ranch Chicken	6,460	7,612,046	424,085	257	45	213	-60	MIM	RAB	34762
	E45/4867	Ranch Chicken	6,460	7,612,027	424,071	257	37	213	-60	MIM	RAB	34762
	E45/4867	Ranch Chicken	6,570	7,612,138	424,025	257	54	33	-60	MIM	RAB	65268
	E45/4867	Ranch Chicken	6,680	7,612,253	423,985	257	49	213	-60	MIM	RAB	34762
	E45/4867	Ranch Chicken	6,680	7,612,230	423,969	257	51	213	-60	MIM	RAB	34762
	E45/4867	Ranch Chicken	6,680	7,612,212	423,955	257	42	213	-60	MIM	RAB	34762
	E45/4867	Ranch	6,680	7,612,212	423,955	257	58	213	-60	MIM	RAB	34762
	E45/4867 E45/4867	Ranch	6,010	7,612,196	423,945	257	36	213	-60	MIM	RAB	34762
	•	Ranch	•		•					MIM		
	E45/4867 E45/4867	Ranch	6,680 6,680	7,612,171 7,612,158	423,927 423,918	257 257	42 45	213 213	-60 -60	MIM	RAB RAB	34762 34762

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
CR62	E45/4867	Ranch Chicken	6,680	7,612,135	423,901	257	33	213	-60	MIM	RAB	34762
CR63	E45/4867	Ranch Chicken	6,300	7,612,044	424,269	257	70	213	-60	MIM	RAB	38092
CR64	E45/4867	Ranch Chicken	6,300	7,612,026	424,253	257	50	213	-60	MIM	RAB	38092
CR65	E45/4867	Ranch Chicken	6,300	7,612,003	424,239	257	50	213	-60	MIM	RAB	38092
CR66	E45/4867	Ranch Chicken	6,300	7,611,983	424,224	257	50	213	-60	MIM	RAB	38092
CR67	E45/4867	Ranch Chicken	6,300	7,611,962	424,208	257	50	213	-60	MIM	RAB	38092
CR68	E45/4867	Ranch Chicken	6,300	7,611,943	424,194	257	50	213	-60	MIM	RAB	38092
CR69	E45/4867	Ranch Chicken	6,300	7,611,923	424,177	257	50	213	-60	MIM	RAB	38092
CR7	E45/4867	Ranch Chicken	6,020	7,611,828	424,426	257	48	213	-60	MIM	RAB	34762
CR70	E45/4867	Ranch Chicken	6,300	7,611,904	424,161	257	50	213	-60	MIM	RAB	38092
CR71	E45/4867	Ranch Chicken	6,300	7,611,885	424,145	257	50	213	-60	MIM	RAB	38092
CR72	E45/4867	Ranch Chicken	6,300	7,612,065	424,284	257	50	213	-60	MIM	RAB	38092
CR73	E45/4867	Ranch Chicken	6,300	7,612,014	424,247	257	53	33	-60	MIM	RAB	38092
CR74	E45/4867	Ranch Chicken	6,080	7,611,894	424,400	257	59	33	-60	MIM	RAB	38092
CR75	E45/4867	Ranch Chicken	6,560	7,612,098	424,011	257	121	33	-60	MIM	RAB	38092
CR76	E45/4867	Ranch Chicken	6,010	7,611,709	424,342	257	50	213	-60	MIM	RAB	38092
CR77	E45/4867	Ranch Chicken	6,010	7,611,731	424,356	257	50	213	-60	MIM	RAB	38092
CR78	E45/4867	Ranch Chicken	6,010	7,611,750	424,372	257	50	213	-60	MIM	RAB	38092
CR79	E45/4867	Ranch Chicken	6,020	7,611,612	424,262	257	50	213	-60	MIM	RAB	38092
CR8	E45/4867	Ranch Chicken	6,010	7,611,811	424,417	257	69	213	-60	MIM	RAB	34762
CR80	E45/4867	Ranch Chicken	6,020	7,611,632	424,277	257	50	213	-60	MIM	RAB	38092
CR81	E45/4867	Ranch Chicken	6,020	7,611,652	424,292	257	32	213	-60	MIM	RAB	38092
CR9	E45/4867	Ranch Chicken	6,010	7,611,781	424,394	257	51	213	-60	MIM	RAB	34762
CR92	E45/4867	Ranch Chicken	6,300	7,611,980	424,222	257	100	33	-60	MIM	RAB	38092
CR92-1	E45/4867	Ranch Chicken	6,580	7,612,265	424,119	257	274	225	-60	MIM	RAB	38092
CR92-2	E45/4867	Ranch Chicken	6,450	7,612,243	424,243	257	323	47	-60	MIM	DDH	38092
CR93	E45/4867	Ranch Chicken	6,350	7,612,205	424,325	257	68	213	-60	MIM	RAB	38092
CR94	E45/4867	Ranch Chicken	6,350	7,612,263	424,323	257	77	213	-60	MIM	RAB	38092
	,	Ranch Chicken			•					MIM		
CR95	E45/4867	Ranch	6,350	7,612,067	424,223	257	60	213	-60	MIM	RAB	38092
CR96	E45/4867	Ranch Chicken	6,350	7,612,091	424,241	257	50	213	-60	MIM	RAB	38092
CR97	E45/4867	Ranch	6,350	7,612,116	424,259	257	50	213	-60	MIM	RAB	38092
CR98	E45/4867	Ranch	6,350	7,612,140	424,277	257	50	213	-60		RAB	38092
CR99	E45/4867	Chicken Ranch	6,190	7,611,945	424,321	257	71	33	-60	MIM	RAB	38092
CRAC09	E45/4867	Chicken Ranch	7,960	7,613,208	423,250	257	80	213	-60	MIM	AC	47879
CRAC10	E45/4867	Chicken Ranch	7,960	7,613,249	423,280	257	80	213	-60	MIM	AC	47879
CRAC11	E45/4867	Chicken Ranch	7,960	7,613,289	423,310	257	80	213	-60	MIM	AC	47879
CRAC12	E45/4867	Chicken Ranch	7,970	7,613,330	423,340	257	80	213	-60	MIM	AC	47879
CRAC13	E45/4867	Chicken Ranch	7,970	7,613,370	423,370	257	80	213	-60	MIM	AC	47879
CRAC16	E45/4867	Chicken Ranch	7,890	7,613,172	423,310	257	80	213	-60	MT BURGESS	AC	64338
CRAC17	E45/4867	Chicken Ranch	7,890	7,613,205	423,334	257	80	213	-60	MT BURGESS	AC	64338
CRAC18	E45/4867	Chicken Ranch	7,890	7,613,236	423,359	257	80	213	-60	MT BURGESS	AC	64338
CRAC19	E45/4867	Chicken Ranch	7,890	7,613,268	423,382	257	80	213	-60	MT BURGESS	AC	64338
CRAC20	E45/4867	Chicken Ranch	7,610	7,612,828	423,364	257	80	33	-60	MT BURGESS	AC	64338
CRAC21	E45/4867	Chicken Ranch	7,610	7,612,795	423,339	257	80	33	-60	MT BURGESS	AC	64338
CRAC22	E45/4867	Chicken Ranch	7,610	7,612,764	423,315	257	80	33	-60	MT BURGESS	AC	64338

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
CRAC23	E45/4867	Chicken Ranch	7,610	7,612,732	423,291	257	80	33	-60	MT BURGESS	AC	64338
CRAC24	E45/4867	Chicken Ranch	7,610	7,612,700	423,267	257	80	33	-60	MT BURGESS	AC	64338
CRAC25	E45/4867	Chicken Ranch	5,740	7,611,762	424,692	257	80	33	-60	MT BURGESS	AC	64338
CRAC26	E45/4867	Chicken Ranch	5,850	7,611,822	424,613	257	80	33	-60	MT BURGESS	AC	64338
CRAC27	E45/4867	Chicken Ranch	8,310	7,613,200	422,847	257	80	213	-60	MT BURGESS	AC	64338
CRAC28	E45/4867	Chicken Ranch	8,310	7,613,242	422,875	257	80	213	-60	MT BURGESS	AC	64338
CRAC29	E45/4867	Chicken Ranch	8,310	7,613,161	422,816	257	80	213	-60	MT BURGESS	AC	64338
CRB387	E45/4867	Chicken Ranch	6,460	7,612,095	424,118	257	50	33	-60	MT BURGESS	RAB	50693
CRB388	E45/4867	Chicken Ranch	6,460	7,612,074	424,103	257	50	33	-60	MT BURGESS	RAB	50693
CRB389	E45/4867	Chicken Ranch	6,460	7,612,054	424,088	257	50	33	-60	MT BURGESS	RAB	50693
CRB390	E45/4867	Chicken Ranch	6,460	7,612,034	424,073	257	50	33	-60	MT BURGESS	RAB	50693
CRB391	E45/4867	Chicken	6,460	7,612,014	424,058	257	60	33	-60	MT BURGESS	RAB	50693
CRB392	E45/4867	Ranch Chicken	6,520	7,612,125	424,078	257	50	33	-60	MT BURGESS	RAB	50693
CRB393	E45/4867	Ranch Chicken	6,520	7,612,084	424,048	257	50	33	-60	MT BURGESS	RAB	50693
CRB394	E45/4867	Ranch Chicken	6,520	7,612,064	424,033	257	50	33	-60	MT BURGESS	RAB	50693
CRB395	E45/4867	Ranch Chicken	6,570	7,612,126	424,016	257	80	33	-60	MT BURGESS	RAB	50693
CRB396	E45/4867	Ranch Chicken	6,630	7,612,185	423,997	257	50	33	-60	MT BURGESS	RAB	50693
CRB397	E45/4867	Ranch Chicken	6,630	7,612,164	423,982	257	50	33	-60	MT BURGESS	RAB	50693
CRB398	E45/4867	Ranch Chicken	6,630	7,612,132	423,958	257	50	33	-60	MT BURGESS	RAB	50693
CRB399	E45/4867	Ranch Chicken	6,630	7,612,112	423,943	257	50	33	-60	MT BURGESS	RAB	50693
CRB400	E45/4867	Ranch Chicken	6,680	7,612,215	423,956	257	50	33	-60	MT BURGESS	RAB	50693
CRB401	E45/4867	Ranch Chicken	6,680	7,612,194	423,941	257	50	33	-60	MT BURGESS	RAB	50693
CRB402	E45/4867	Ranch Chicken	6,680	7,612,174	423,926	257	50	33	-60	MT BURGESS	RAB	50693
CRD92-1	E45/4867	Ranch Chicken	6,570	7,612,251	424,109	257	274	213	-60	MIM	DDH	65268
CRD92-2	E45/4867	Ranch Chicken	6,300	7,612,151	424,347	257	323	213	-60	MIM	DDH	65268
CRD93-1	E45/4867	Ranch Chicken	6,570	7,612,057	423,965	257	249	35	-60	MIM	DDH	65268
CRD93-2	E45/4867	Ranch Chicken	6,300	7,611,940	424,192	257	205	35	-60	MIM	DDH	65268
CRRB001	E45/4867	Ranch Chicken	6,900	7,612,213	423,711	257	77	33	-60	MT BURGESS	RAB	64338
CRRB002	E45/4867	Ranch Chicken	6,900	7,612,177	423,684	257	40	33	-60	MT BURGESS	RAB	64338
CRRB004	E45/4867	Ranch Chicken	6,900	7,612,110	423,636	257	62	33	-60	MT BURGESS	RAB	64338
CRRB005	E45/4867	Ranch Chicken	6,900	7,612,110	423,697	257	40	33	-60	MT BURGESS	RAB	64338
CRRB006	E45/4867	Ranch Chicken	6,890	7,612,142	423,664	257	61	33	-60	MT BURGESS	RAB	64338
CRRB007	E45/4867	Ranch Chicken	7,380	7,612,736	423,561	257	73	33	-60	MT BURGESS	RAB	64338
CRRB008	E45/4867	Ranch Chicken	7,380			257	40	33	-60	MT BURGESS	RAB	64338
CRRB009	E45/4867	Ranch Chicken	7,380	7,612,703 7,612,719	423,535 423,551	257	40	33	-60	MT BURGESS	RAB	64338
CRRB010	E45/4867	Ranch Chicken	•				40		-60	MT BURGESS		64338
CRRB011	·	Ranch Chicken	7,380	7,612,689	423,524	257		33		MT BURGESS	RAB	64338
CRRB012	E45/4867	Ranch Chicken	7,380	7,612,671	423,512	257	40	33	-60 -60	MT BURGESS	RAB	
CRRB013	E45/4867	Ranch Chicken	7,380	7,612,658	423,499	257	50	33		MT BURGESS	RAB	64338
CRRB014	E45/4867	Ranch Chicken	7,380	7,612,639	423,489	257	48	33	-60	MT BURGESS	RAB	64338
	E45/4867	Ranch Chicken	7,380	7,612,623	423,477	257	58 E2	33	-60	MT BURGESS	RAB	64338
CRRB015	E45/4867	Ranch	7,380	7,612,608	423,464	257	52	33	-60		RAB	64338
CRRB016	E45/4867	Chicken Ranch	7,610	7,613,216	423,657	257	52	33	-60	MT BURGESS	RAB	64338
CRRB017	E45/4867	Chicken Ranch	7,610	7,613,182	423,633	257	78	33	-60	MT BURGESS	RAB	64338
CRRB018	E45/4867	Chicken Ranch	7,610	7,613,151	423,608	257	40	33	-60	MT BURGESS	RAB	64338
CRRB019	E45/4867	Chicken Ranch	7,610	7,613,120	423,585	257	52	33	-60	MT BURGESS	RAB	64338
CRRB020	E45/4867	Chicken	7,610	7,613,134	423,596	257	40	33	-60	MT BURGESS	RAB	64338

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
CRRC001	E45/4867	Ranch Chicken	6,560	7,612,167	424,063	257	81	213	-60	MIM	RC	65268
CRRC002	E45/4867	Ranch Chicken	6,590	7,612,189	424,049	257	94	213	-60	MIM	RC	65268
CRRC003	E45/4867	Ranch Chicken	6,600	7,612,198	424,035	257	88	213	-60	MIM	RC	65268
CRRC005	E45/4867	Ranch Chicken	6,450	7,612,032	424,083	257	60	33	-60	MT BURGESS	RC	64338
CRRC006	E45/4867	Ranch Chicken	6,450	7,612,023	424,075	257	70	33	-60	MT BURGESS	RC	64338
CRRC007	E45/4867	Ranch Chicken	6,510	7,612,105	424,073	257	75	33	-60	MT BURGESS	RC	64338
CRRC008	E45/4867	Ranch Chicken	6,510	7,612,100	424,064	257	90	33	-60	MT BURGESS	RC	64338
CRRC009	E45/4867	Ranch Chicken	6,550	7,612,104	424,029	257	90	33	-60	MT BURGESS	RC	64338
CRRC010	E45/4867	Ranch Chicken	6,550	7,612,143	424,055	257	45	213	-60	MT BURGESS	RC	64338
CRRC011	E45/4867	Ranch Chicken	6,550	7,612,159	424,066	257	85	213	-60	MT BURGESS	RC	64338
CRRC012	E45/4867	Ranch Chicken	6,570	7,612,147	424,040	257	40	33	-60	MT BURGESS	RC	64338
CRRC013	E45/4867	Ranch Chicken	6,560	7,612,160	424,055	257	50	213	-60	MT BURGESS	RC	64338
CRRC014	E45/4867	Ranch Chicken	6,560	7,612,167	424,060	257	60	213	-60	MT BURGESS	RC	64338
CRRC015	E45/4867	Ranch Chicken	6,570	7,612,143	424,030	257	60	30	-60	MT BURGESS	RC	64338
CRRC016	E45/4867	Ranch Chicken	6,590	7,612,153	424,013	257	43	33	-60	MT BURGESS	RC	64338
CRRC017	E45/4867	Ranch Chicken	6,400	7,612,002	424,121	257	50	33	-60	MT BURGESS	RC	64338
CRRC018	E45/4867	Ranch Chicken	6,550	7,612,151	424,059	257	50	213	-60	MT BURGESS	RC	64338
CRRC019	E45/4867	Ranch Chicken	6,570	7,612,150	424,034	257	40	33	-60	MT BURGESS	RC	64338
CRRC020	E45/4867	Ranch Chicken	6,590	7,612,162	424,019	257	50	33	-60	MT BURGESS	RC	64338
CRRC021	E45/4867	Ranch Chicken	6,620	7,612,191	424,017	257	35	213	-60	MT BURGESS	RC	64338
YAC0028	E45/4867	Ranch Chicken	6,570	7,611,952	423,887	257	9	0	-90	NEWCREST	AC	57777
YAC0029	E45/4867	Ranch Chicken	6,570	7,611,993	·	257	9	0	-90	NEWCREST	AC	57777
YAC0030		Ranch Chicken	·		423,917					NEWCREST		
	E45/4867	Ranch	6,570	7,612,033	423,947	257	6	0	-90	NEWCREST	AC	57777
YAC0031	E45/4867	Ranch	6,570	7,612,074	423,977	257	5	0	-90	NEWCREST	AC	57777
YAC0032	E45/4867	Chicken Ranch	6,570	7,612,114	424,007	257	9	0	-90		AC	57777
YAC0033	E45/4867	Chicken Ranch	6,570	7,612,134	424,022	257	36	0	-90	NEWCREST	AC	57777
YAC0034	E45/4867	Chicken Ranch	6,570	7,612,155	424,037	257	9	0	-90	NEWCREST	AC	57777
YAC0035	E45/4867	Chicken Ranch	6,570	7,612,175	424,052	257	9	0	-90	NEWCREST	AC	57777
YAC0036	E45/4867	Chicken Ranch	6,570	7,612,195	424,067	257	6	0	-90	NEWCREST	AC	57777
YAC0037	E45/4867	Chicken Ranch	6,570	7,612,236	424,097	257	9	0	-90	NEWCREST	AC	57777
YAC0038	E45/4867	Chicken Ranch	6,580	7,612,276	424,127	257	9	0	-90	NEWCREST	AC	57777
YAC0039	E45/4867	Chicken Ranch	6,580	7,612,317	424,157	257	9	0	-90	NEWCREST	AC	57777
YAC0040	E45/4867	Chicken Ranch	6,580	7,612,398	424,217	257	9	0	-90	NEWCREST	AC	57777
YAC0714	E45/4867	Chicken Ranch	6,580	7,612,438	424,247	257	9	0	-90	NEWCREST	AC	57777
YAC0715	E45/4867	Chicken Ranch	6,580	7,612,479	424,277	257	5	0	-90	NEWCREST	AC	57777
YAC0716	E45/4867	Chicken Ranch	6,580	7,612,560	424,337	257	8	0	-90	NEWCREST	AC	57777
YAC0717	E45/4867	Chicken Ranch	6,580	7,612,641	424,397	257	5	0	-90	NEWCREST	AC	57777
YAC0718	E45/4867	Chicken Ranch	6,580	7,612,803	424,517	257	8	0	-90	NEWCREST	AC	57777
YAC0830	E45/4867	Chicken Ranch	9,160	7,614,342	422,746	257	6	0	-90	NEWCREST	AC	57777
YAC0831	E45/4867	Chicken Ranch	9,070	7,614,190	422,732	257	6	0	-90	NEWCREST	AC	57777
YAC0832	E45/4867	Chicken Ranch	8,810	7,614,352	423,149	257	9	0	-90	NEWCREST	AC	57777
YAC0833	E45/4867	Chicken Ranch	8,670	7,614,123	423,131	257	6	0	-90	NEWCREST	AC	57777
YAC0834	E45/4867	Chicken Ranch	8,570	7,613,957	423,122	257	6	0	-90	NEWCREST	AC	57777
YAC0835	E45/4867	Chicken Ranch	8,170	7,613,919	423,555	257	9	0	-90	NEWCREST	AC	57777
YAC0846	E45/4867	Chicken Ranch	8,990	7,613,574	422,356	257	6	0	-90	NEWCREST	AC	57777

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
YAC0850	E45/4867	Chicken Ranch	8,600	7,613,517	422,761	257	6	0	-90	NEWCREST	AC	57777
YAC0851	E45/4867	Chicken Ranch	8,460	7,613,347	422,793	257	18	0	-90	NEWCREST	AC	57777
YAC0852	E45/4867	Chicken Ranch	8,370	7,613,157	422,746	257	51	0	-90	NEWCREST	AC	57777
YAC0853	E45/4867	Chicken Ranch	8,230	7,612,926	422,727	257	12	0	-90	NEWCREST	AC	57777
YAC0854	E45/4867	Chicken Ranch	8,110	7,612,748	422,729	257	27	0	-90	NEWCREST	AC	57777
YAC0855	E45/4867	Chicken Ranch	7,980	7,612,540	422,727	257	8	0	-90	NEWCREST	AC	57777
YAC0856	E45/4867	Chicken Ranch	7,380	7,612,184	423,143	257	24	0	-90	NEWCREST	AC	57777
YAC0857	E45/4867	Chicken Ranch	7,520	7,612,365	423,116	257	24	0	-90	NEWCREST	AC	57777
YAC0858	E45/4867	Chicken Ranch	7,660	7,612,567	423,105	257	18	0	-90	NEWCREST	AC	57777
YAC0859	E45/4867	Chicken Ranch	7,780	7,612,765	423,118	257	12	0	-90	NEWCREST	AC	57777
YAC0860	E45/4867	Chicken	7,910	7,612,941	423,110	257	12	0	-90	NEWCREST	AC	57777
YAC0861	E45/4867	Ranch Chicken	8,030	7,613,137	423,125	257	10	0	-90	NEWCREST	AC	57777
YAC0862	E45/4867	Ranch Chicken	8,200	7,613,398	423,126	257	12	0	-90	NEWCREST	AC	57777
YAC0863	E45/4867	Ranch Chicken	8,300	7,613,567	423,137	257	9	0	-90	NEWCREST	AC	57777
YAC0864	E45/4867	Ranch Chicken	8,440	7,613,782	423,144	257	6	0	-90	NEWCREST	AC	57777
YAC0865	E45/4867	Ranch Chicken	7,810	7,613,362	423,535	257	6	0	-90	NEWCREST	AC	57777
YAC0866	E45/4867	Ranch Chicken	7,690	7,613,158	423,522	257	9	0	-90	NEWCREST	AC	57777
YAC0867	E45/4867	Ranch Chicken	7,390	7,612,767	423,569	257	15	0	-90	NEWCREST	AC	57777
YAC0868	E45/4867	Ranch Chicken	7,260	7,612,564	423,559	257	3	0	-90	NEWCREST	AC	57777
YAC0869	E45/4867	Ranch Chicken	7,150	7,612,353	423,533	257	4	0	-90	NEWCREST	AC	57777
YAC0870	E45/4867	Ranch Chicken	6,990	7,612,134	423,547	257	18	0	-90	NEWCREST	AC	57777
YAC0871	E45/4867	Ranch Chicken	6,660	7,612,155	423,938	257	6	0	-90	NEWCREST	AC	57777
YAC0872	E45/4867	Ranch Chicken	6,820	7,612,366	423,913	257	12	0	-90	NEWCREST	AC	57777
YAC0873	E45/4867	Ranch Chicken	6,950	7,612,560	423,915	257	6	0	-90	NEWCREST	AC	57777
YAC0874	E45/4867	Ranch Chicken	7,080	7,612,766	423,919	257	5	0	-90	NEWCREST	AC	57777
YAC0875	E45/4867	Ranch Chicken	7,180	7,612,952	423,952	257	12	0	-90	NEWCREST	AC	57777
YAC0876	E45/4867	Ranch Chicken	7,320	7,613,158	423,942	257	12	0	-90	NEWCREST	AC	57777
YAC0878	E45/4867	Ranch Chicken	6,700	7,612,763	424,350	257	6	0	-90	NEWCREST	AC	57777
YAC0879	E45/4867	Ranch Chicken	6,440	7,612,355	424,343	257	6	0	-90	NEWCREST	AC	57777
YAC0880	E45/4867	Ranch Chicken	6,290	7,612,152	424,354	257	6	0	-90	NEWCREST	AC	57777
YAC0881	E45/4867	Ranch Chicken	6,170	7,611,959	424,349	257	12	0	-90	NEWCREST	AC	57777
YAC0882	E45/4867	Ranch Chicken	6,040	7,611,746	424,338	257	9	0	-90	NEWCREST	AC	57777
YAC0883	E45/4867	Ranch Chicken	5,450	7,611,393	424,745	257	6	0	-90	NORMANDY	AC	57777
YAC0884	E45/4867	Ranch Chicken	5,600	7,611,589	424,716	257	6	0	-90	NORMANDY	AC	57777
YAC0885	E45/4867	Ranch Chicken	5,750	7,611,785	424,701	257	9	0	-90	NEWCREST	AC	57777
YAC0886	E45/4867	Ranch Chicken	5,900	7,611,983	424,679	257	9	0	-90	NEWCREST	AC	57777
YAC0887	E45/4867	Ranch Chicken	6,000	7,612,170	424,706	257	3	0	-90	NEWCREST	AC	57777
YAC0888	E45/4867	Ranch Chicken	6,110	7,612,170	424,728	257	6	0	-90	NEWCREST	AC	57777
YAC0889	E45/4867	Ranch Chicken	6,240	7,612,567	424,727	257	6	0	-90	NEWCREST	AC	57777
YAC0890	E45/4867	Ranch Chicken	6,390	7,612,825	424,748	257	6	0	-90	NEWCREST	AC	57777
YAC0892	E45/4867	Ranch Chicken	5,730	7,612,352	424,748	257	5	0	-90	NEWCREST	AC	57777
YAC0893	E45/4867	Ranch Chicken	5,600				6		-90	NEWCREST	AC	
YAC0894		Ranch		7,612,152	425,142	257		0		NORMANDY		57777
	E45/4867	Ranch	5,440	7,611,906	425,140	257	5	0	-90	NORMANDY	AC	57777
YAC0895	E45/4867	Ranch	5,130	7,611,471	425,166	257	6	0	-90		AC	57777
YAC0896	E45/4867	Chicken Ranch	5,050	7,611,329	425,147	257	6	0	-90	NORMANDY	AC	57777
YAC0897	E45/4867	Chicken	4,970	7,611,204	425,148	257	6	0	-90	NORMANDY	AC	57777

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
YAC0898	E45/4867	Ranch Chicken	4,610	7,611,150	425,517	257	3	0	-90	NORMANDY	AC	57777
YAC0899	E45/4867	Ranch Chicken	4,760	7,611,386	425,522	257	3	0	-90	NORMANDY	AC	57777
YAC0900	E45/4867	Ranch Chicken	4,900	7,611,620	425,543	257	6	0	-90	NORMANDY	AC	57777
YAC0901	E45/4867	Ranch Chicken	4,960	7,611,778	425,589	257	6	0	-90	NORMANDY	AC	57777
YAC0902	E45/4867	Ranch Chicken	5,130	7,611,982	425,551	257	6	0	-90	NORMANDY	AC	57777
YAC0903	E45/4867	Ranch Chicken	5,280	7,612,171	425,521	257	6	0	-90	NORMANDY	AC	57777
YRB1001	E45/4867	Ranch Chicken	5,800	7,611,816	424,664	257	14	33	-60	NEWCREST	AC	60195
YRB1002	E45/4867	Ranch Chicken	5,800	7,611,795	424,649	257	101	33	-60	NEWCREST	AC	60195
YRB1003	E45/4867	Ranch Chicken	5,800	7,611,775	424,634	257	101	33	-60	NEWCREST	AC	60195
YRB1004	E45/4867	Ranch Chicken	5,800	7,611,735	424,604	257	101	33	-60	NEWCREST	AC	60195
YRB1005	E45/4867	Ranch Chicken	5,800	7,611,694	424,574	257	101	33	-60	NEWCREST	AC	60195
YRB1006	E45/4867	Ranch Chicken	5,800	7,611,654	424,544	257	101	33	-60	NEWCREST	AC	60195
YRB1007	E45/4867	Ranch Chicken	5,800	7,611,613	424,514	257	101	33	-60	NEWCREST	AC	60195
YRB1008	E45/4867	Ranch Chicken	6,240	7,611,975	424,280	257	101	33	-60	NEWCREST	AC	60195
YRB1009	E45/4867	Ranch Chicken	6,240	7,611,950	424,262	257	60	33	-60	NEWCREST	AC	60195
YRB1010	E45/4867	Ranch Chicken	6,240	7,611,910	424,232	257	101	33	-60	NEWCREST	AC	60195
YRB1011	E45/4867	Ranch Chicken	6,240	7,611,869	424,202	257	101	33	-60	NEWCREST	AC	60195
YRB1012	E45/4867	Ranch Chicken	6,240	7,612,072	424,352	257	100	33	-60	NEWCREST	AC	60195
YRB1013	E45/4867	Ranch Chicken	6,240	7,612,031	424,322	257	101	33	-60	NEWCREST	AC	60195
YRB1014	E45/4867	Ranch Chicken	6,240	7,611,991	424,292	257	101	33	-60	NEWCREST	AC	60195
YRB1015	E45/4867	Ranch Chicken	6,020	7,611,936	424,502	257	101	33	-60	NEWCREST	AC	60195
YRB1016	E45/4867	Ranch Chicken	6,020	7,611,895	424,472	257	101	33	-60	NEWCREST	AC	60195
YRB1017	E45/4867	Ranch Chicken	6,020	7,611,855	424,442	257	101	33	-60	NEWCREST	AC	60195
YRB1018	E45/4867	Ranch Chicken	6,020	7,611,833	424,412	257	101	33	-60	NEWCREST	AC	60195
YRB1019	E45/4867	Ranch Chicken	6,020			257	101	33	-60	NEWCREST	AC	60195
YRB1020	E45/4867	Ranch	•	7,611,774	424,382	257	101	33	-60	NEWCREST	AC	60195
YRB1021	E45/4867	Ranch	6,020 6,020	7,611,733 7,611,729	424,352	257	101		-60	NEWCREST	AC	60195
YRB1022	,	Ranch	•		424,349			213		NEWCREST		
	E45/4867	Ranch	6,460	7,612,095	424,118	257	101	33	-60	NEWCREST	AC	60195
YRB1023 YRB1024	E45/4867	Ranch	6,460	7,612,074	424,103	257	101	33	-60		AC	60195
	E45/4867	Chicken Ranch	6,460	7,612,054	424,088	257	122	33	-60	NEWCREST	AC	60195
YRB1025	E45/4867	Chicken Ranch	6,460	7,612,014	424,058	257	101	33	-60	NEWCREST	AC	60195
YRB1026	E45/4867	Chicken Ranch	6,460	7,611,973	424,028	257	101	33	-60	NEWCREST	AC	60195
YRB2000	E45/4867	Chicken Ranch	6,690	7,612,539	424,196	257	83	33	-60	NEWCREST	RAB	60195
YRB2001	E45/4867	Chicken Ranch	6,690	7,612,498	424,166	257	64	33	-60	NEWCREST	RAB	60195
YRB2002	E45/4867	Chicken Ranch	6,690	7,612,458	424,136	257	98	33	-60	NEWCREST	RAB	60195
YRB2003	E45/4867	Chicken Ranch	6,690	7,612,417	424,106	257	89	33	-60	NEWCREST	RAB	60195
YRB2004	E45/4867	Chicken Ranch	6,690	7,612,377	424,076	257	98	33	-60	NEWCREST	RAB	60195
YRB2005	E45/4867	Chicken Ranch	6,690	7,612,336	424,046	257	59	33	-60	NEWCREST	RAB	60195
YRB2006	E45/4867	Chicken Ranch	6,690	7,612,296	424,016	257	100	33	-60	NEWCREST	RAB	60195
YRB2007	E45/4867	Chicken Ranch	6,680	7,612,255	423,986	257	100	33	-60	NEWCREST	RAB	60195
YRB2008	E45/4867	Chicken Ranch	6,680	7,612,215	423,956	257	100	33	-60	NEWCREST	RAB	60195
YRB2009	E45/4867	Chicken Ranch	6,680	7,612,174	423,926	257	100	33	-60	NEWCREST	RAB	60195
YRB2010	E45/4867	Chicken Ranch	6,680	7,612,134	423,896	257	100	33	-60	NEWCREST	RAB	60195
YRB2011	E45/4867	Chicken Ranch	6,680	7,612,093	423,866	257	63	33	-60	NEWCREST	RAB	60195
YRB2012	E45/4867	Chicken Ranch	6,680	7,612,053	423,836	257	100	33	-60	NEWCREST	RAB	60195

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
YRB2013	E45/4867	Chicken Ranch	6,680	7,612,012	423,806	257	100	33	-60	NEWCREST	RAB	60195
YRB2014	E45/4867	Chicken Ranch	6,850	7,613,007	424,364	257	61	33	-60	NEWCREST	RAB	60195
YRB2015	E45/4867	Chicken Ranch	6,850	7,612,980	424,345	257	80	33	-60	NEWCREST	RAB	60195
YRB2016	E45/4867	Chicken Ranch	6,850	7,612,942	424,317	257	100	33	-60	NEWCREST	RAB	60195
YRB2017	E45/4867	Chicken Ranch	6,850	7,612,902	424,288	257	50	33	-60	NEWCREST	RAB	60195
YRB2018	E45/4867	Chicken Ranch	6,830	7,612,336	423,876	257	100	33	-60	NEWCREST	RAB	60195
YRB2019	E45/4867	Chicken Ranch	6,830	7,612,295	423,847	257	20	33	-60	NEWCREST	RAB	60195
YRB2020	E45/4867	Chicken Ranch	6,830	7,612,255	423,818	257	15	33	-60	NEWCREST	RAB	60195
YRB2021	E45/4867	Chicken Ranch	6,830	7,612,315	423,862	257	50	33	-60	NEWCREST	RAB	60195
YRB2022	E45/4867	Chicken Ranch	6,830	7,612,275	423,832	257	50	33	-60	NEWCREST	RAB	60195
YRB2023	E45/4867	Chicken Ranch	6,830	7,612,214	423,788	257	100	33	-60	NEWCREST	RAB	60195
YRB2024	E45/4867	Chicken Ranch	6,830	7,612,174	423,759	257	100	33	-60	NEWCREST	RAB	60195
YRB2025	E45/4867	Chicken Ranch	6,830	7,612,133	423,730	257	100	33	-60	NEWCREST	RAB	60195
YRB2026	E45/4867	Chicken	6,830	7,612,093	423,700	257	100	33	-60	NEWCREST	RAB	60195
YRB2027	E45/4867	Ranch Chicken Ranch	6,830	7,612,052	423,671	257	100	33	-60	NEWCREST	RAB	60195
YRB2028	E45/4867	Chicken	6,830	7,612,012	423,641	257	20	33	-60	NEWCREST	RAB	60195
YRB2029	E45/4867	Ranch Chicken	6,830	7,612,020	423,647	257	80	33	-60	NEWCREST	RAB	60195
YRB2030	E45/4867	Ranch Chicken	7,300	7,613,218	424,017	257	51	33	-60	NEWCREST	RAB	60195
YRB2031	E45/4867	Ranch Chicken	7,300	7,613,177	423,987	257	91	33	-60	NEWCREST	RAB	60195
YRB2032	E45/4867	Ranch Chicken	7,300	7,613,137	423,958	257	100	33	-60	NEWCREST	RAB	60195
YRB2033	E45/4867	Ranch Chicken	7,290	7,613,096	423,929	257	100	33	-60	NEWCREST	RAB	60195
YRB2034	E45/4867	Ranch Chicken	7,290	7,613,056	423,899	257	100	33	-60	NEWCREST	RAB	60195
YRB2035	E45/4867	Ranch Chicken	7,290	7,613,016	423,870	257	13	33	-60	NEWCREST	RAB	60195
YRB2036	E45/4867	Ranch Chicken	7,290	7,612,975	423,840	257	100	33	-60	NEWCREST	RAB	60195
YRB2037	E45/4867	Ranch Chicken	7,290	7,613,036	423,884	257	50	33	-60	NEWCREST	RAB	60195
YRB2038	E45/4867	Ranch Chicken	7,290	7,612,935	423,811	257	89	33	-60	NEWCREST	RAB	60195
YRB2039	E45/4867	Ranch Chicken	7,290	7,612,894	423,782	257	100	33	-60	NEWCREST	RAB	60195
YRB2040	E45/4867	Ranch Chicken	7,290	7,612,854	423,752	257	100	33	-60	NEWCREST	RAB	60195
YRB2041	E45/4867	Ranch Chicken	7,290	7,612,773	423,693	257	100	33	-60	NEWCREST	RAB	60195
YRB2042	E45/4867	Ranch Chicken	7,280	7,612,732	423,664	257	100	33	-60	NEWCREST	RAB	60195
YRB2043	E45/4867	Ranch Chicken	7,280	7,612,692	423,635	257	100	33	-60	NEWCREST	RAB	60195
YRB2044	E45/4867	Ranch Chicken	7,280	7,612,652	423,605	257	86	33	-60	NEWCREST	RAB	60195
YRB2045	E45/4867	Ranch Chicken	7,280	7,612,611	423,576	257	100	33	-60	NEWCREST	RAB	60195
YRB2046	E45/4867	Ranch Chicken	7,280	7,612,571	423,546	257	100	33	-60	NEWCREST	RAB	60195
YRB2047	E45/4867	Ranch Chicken	7,280	7,612,530	423,517	257	100	33	-60	NEWCREST	RAB	60195
YRB2048	E45/4867	Ranch Chicken	7,280	7,612,490	423,488	257	100	33	-60	NEWCREST	RAB	60195
YRB2049	E45/4867	Ranch Chicken	7,280	7,612,449	423,458	257	100	33	-60	NEWCREST	RAB	60195
YRB2050	E45/4867	Ranch Chicken	7,280	7,612,409	423,429	257	100	33	-60	NEWCREST	RAB	60195
YRB2051	E45/4867	Ranch Chicken	7,270	7,612,368	423,400	257	100	33	-60	NEWCREST	RAB	60195
YRB2052	E45/4867	Ranch Chicken	7,270	7,612,328	423,370	257	100	33	-60	NEWCREST	RAB	60195
YRB2053	E45/4867	Ranch Chicken	7,270	7,612,287	423,341	257	100	33	-60	NEWCREST	RAB	60195
YRB2054	E45/4867	Ranch Chicken	7,270	7,612,247	423,311	257	100	33	-60	NEWCREST	RAB	60195
YRB2055	E45/4867	Ranch Chicken	7,270	7,612,207	423,282	257	100	33	-60	NEWCREST	RAB	60195
YRB2056	E45/4867	Ranch Chicken	7,740	7,613,453	423,692	257	100	33	-60	NEWCREST	RAB	60195
YRB2057	E45/4867	Ranch Chicken	7,740	7,613,412	423,662	257	100	33	-60	NEWCREST	RAB	60195
		Ranch										

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
YRB2059	E45/4867	Ranch Chicken	7,740	7,613,331	423,604	257	100	33	-60	NEWCREST	RAB	60195
YRB2060	E45/4867	Ranch Chicken	7,730	7,613,291	423,574	257	100	33	-60	NEWCREST	RAB	60195
YRB2061	E45/4867	Ranch Chicken	7,730	7,613,251	423,545	257	100	33	-60	NEWCREST	RAB	60195
YRB2062	E45/4867	Ranch Chicken	7,730	7,613,210	423,515	257	47	33	-60	NEWCREST	RAB	60195
YRB2063	E45/4867	Ranch Chicken	7,730	7,613,170	423,486	257	100	33	-60	NEWCREST	RAB	60195
YRB2064	E45/4867	Ranch Chicken	7,730	7,613,129	423,457	257	100	33	-60	NEWCREST	RAB	60195
YRB2065	E45/4867	Ranch Chicken	7,730	7,613,089	423,427	257	100	33	-60	NEWCREST	RAB	60195
YRB2066	E45/4867	Ranch Chicken	7,730	7,613,048	423,398	257	100	33	-60	NEWCREST	RAB	60195
YRB2067	E45/4867	Ranch Chicken	7,730	7,613,008	423,368	257	100	33	-60	NEWCREST	RAB	60195
YRB2068	E45/4867	Ranch Chicken	7,730	7,612,967	423,339	257	100	33	-60	NEWCREST	RAB	60195
YRB2069	E45/4867	Ranch Chicken	7,720	7,612,927	423,310	257	100	33	-60	NEWCREST	RAB	60195
YRB2070	E45/4867	Ranch Chicken	7,720	7,612,887	423,280	257	100	33	-60	NEWCREST	RAB	60195
YRB2071	E45/4867	Ranch Chicken	7,720	7,612,846	423,251	257	100	33	-60	NEWCREST	RAB	60195
YRB2072	E45/4867	Ranch Chicken	7,720	7,612,806	423,221	257	53	33	-60	NEWCREST	RAB	60195
YRB2073	E45/4867	Ranch Chicken	7,720	7,612,765	423,192	257	100	33	-60	NEWCREST	RAB	60195
YRB2074	E45/4867	Ranch Chicken	7,720	7,612,725	423,163	257	100	33	-60	NEWCREST	RAB	60195
YRB2075	E45/4867	Ranch Chicken	7,720	7,612,684	423,133	257	100	33	-60	NEWCREST	RAB	60195
YRB2076	E45/4867	Ranch Chicken	7,720	7,612,644	423,104	257	100	33	-60	NEWCREST	RAB	60195
YRB2077	E45/4867	Ranch Chicken	7,720	7,612,603	423,075	257	100	33	-60	NEWCREST	RAB	60195
YRB2078	E45/4867	Ranch Chicken	7,720	7,612,563	423,045	257	100	33	-60	NEWCREST	RAB	60195
YRB2079	E45/4867	Ranch Chicken	7,710	7,612,503	423,043	257	100	33	-60	NEWCREST	RAB	60195
YRB2080	E45/4867	Ranch Chicken	7,710	7,612,482	·	257	86	33	-60	NEWCREST	RAB	60195
YRB2081		Ranch Chicken	•		422,986		100	33	-60	NEWCREST	RAB	60195
YRB2082	E45/4867	Ranch	7,710	7,612,442	422,957	257				NEWCREST		
	E45/4867	Ranch	8,180	7,613,572	423,279	257	100	33	-60	NEWCREST	RAB	60195
YRB2083	E45/4867	Ranch	8,180	7,613,531	423,249	257	100	33	-60	NEWCREST	RAB	60195
YRB2084	E45/4867	Chicken Ranch	8,180	7,613,491	423,220	257	100	33	-60		RAB	60195
YRB2085	E45/4867	Chicken Ranch	8,180	7,613,446	423,187	257	100	33	-60	NEWCREST	RAB	60195
YRB2086	E45/4867	Chicken Ranch	8,160	7,612,803	422,720	257	100	33	-60	NEWCREST	RAB	60195
YRB2087	E45/4867	Chicken Ranch	8,160	7,612,762	422,691	257	80	33	-60	NEWCREST	RAB	60195
YRB2088	E45/4867	Chicken Ranch	8,160	7,612,722	422,661	257	100	33	-60	NEWCREST	RAB	60195
YRB2089	E45/4867	Chicken Ranch	8,160	7,612,682	422,632	257	100	33	-60	NEWCREST	RAB	60195
YRB2090	E45/4867	Chicken Ranch	8,150	7,612,641	422,603	257	100	33	-60	NEWCREST	RAB	60195
YRB2091	E45/4867	Chicken Ranch	8,150	7,612,601	422,573	257	100	33	-60	NEWCREST	RAB	60195
YRB2092	E45/4867	Chicken Ranch	8,600	7,613,432	422,694	257	65	33	-60	NEWCREST	RAB	60195
YRB2093	E45/4867	Chicken Ranch	8,600	7,613,392	422,665	257	100	33	-60	NEWCREST	RAB	60195
YRB2094	E45/4867	Chicken Ranch	8,600	7,613,352	422,635	257	100	33	-60	NEWCREST	RAB	60195
YRB2095	E45/4867	Chicken Ranch	8,600	7,613,311	422,606	257	100	33	-60	NEWCREST	RAB	60195
YRB2096	E45/4867	Chicken Ranch	8,600	7,613,271	422,576	257	98	33	-60	NEWCREST	RAB	60195
YRB2097	E45/4867	Chicken Ranch	8,590	7,613,230	422,547	257	71	33	-60	NEWCREST	RAB	60195
YRB2098	E45/4867	Chicken Ranch	8,590	7,613,190	422,518	257	100	33	-60	NEWCREST	RAB	60195
YRB2099	E45/4867	Chicken Ranch	9,050	7,613,840	422,491	257	95	33	-60	NEWCREST	RAB	60195
YRB2100	E45/4867	Chicken Ranch	9,050	7,613,799	422,462	257	80	33	-60	NEWCREST	RAB	60195
YRB2101	E45/4867	Chicken Ranch	9,050	7,613,759	422,432	257	100	33	-60	NEWCREST	RAB	60195
YRB2102	E45/4867	Chicken Ranch	9,040	7,613,718	422,403	257	100	33	-60	NEWCREST	RAB	60195
YRB2103	E45/4867	Chicken Ranch	9,040	7,613,678	422,374	257	100	33	-60	NEWCREST	RAB	60195

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
YRB2129	E45/4867	Chicken Ranch	8,790	7,614,382	423,196	257	55	54	-60	MT BURGESS	RAB	59339
YRB2129	E45/4867	Chicken Ranch	8,790	7,614,382	423,196	257	55	360	-60	MT BURGESS	RAB	59339
YRB2130	E45/4867	Chicken	8,790	7,614,342	423,166	257	100	33	-60	NEWCREST	RAB	60195
YRB2131	E45/4867	Chicken Ranch	8,790	7,614,301	423,137	257	80	33	-60	NEWCREST	RAB	60195
YRB2132	E45/4867	Chicken	8,790	7,614,261	423,108	257	100	33	-60	NEWCREST	RAB	60195
YRB2133	E45/4867	Ranch Chicken	8,790	7,614,220	423,079	257	80	33	-60	NEWCREST	RAB	60195
YRB2134	E45/4867	Ranch Chicken	8,190	7,613,976	423,572	257	52	54	-60	MT BURGESS	RAB	59339
YRB2134	E45/4867	Ranch Chicken	8,190	7,613,976	423,572	257	52	360	-60	MT BURGESS	RAB	59339
YRB2135	E45/4867	Ranch Chicken	8,190	7,613,936	423,543	257	100	33	-60	NEWCREST	RAB	60195
YRB2136	E45/4867	Ranch Chicken	8,190	7,613,895	423,514	257	74	33	-60	NEWCREST	RAB	60195
YRB2137	E45/4867	Ranch Chicken	8,190	7,613,855	423,484	257	100	33	-60	NEWCREST	RAB	60195
YRB2138	E45/4867	Ranch Chicken	8,190	7,613,826	423,464	257	80	33	-60	NEWCREST	RAB	60195
YRB2387	E45/4867	Ranch Chicken	7,490	7,612,365	423,149	257	100	213	-60	NEWCREST	AC	60195
YRB2388	E45/4867	Ranch Chicken	7,490	7,612,405	423,179	257	100	213	-60	NEWCREST	AC	60195
YRB2389	E45/4867	Ranch Chicken	7,490	7,612,446	423,208	257	100	213	-60	NEWCREST	AC	60195
YRB2390	E45/4867	Ranch Chicken	7,500	7,612,486	423,238	257	100	213	-60	NEWCREST	AC	60195
YRB2391	E45/4867	Ranch Chicken	7,500	7,612,527	423,267	257	100	213	-60	NEWCREST	AC	60195
YRB2392	E45/4867	Ranch Chicken	7,500	7,612,567	423,296	257	100	213	-60	NEWCREST	AC	60195
YRB2393	E45/4867	Ranch Chicken	7,500	7,612,608	423,326	257	100	213	-60	NEWCREST	AC	60195
YRB2394	E45/4867	Ranch Chicken	7,500	7,612,648	423,355	257	100	213	-60	NEWCREST	AC	60195
YRB2395	E45/4867	Ranch Chicken	7,500	7,612,689	423,384	257	100	213	-60	NEWCREST	AC	60195
YRB2396	E45/4867	Ranch Chicken	7,500	7,612,729	423,414	257	104	213	-60	NEWCREST	AC	60195
YRB2397	E45/4867	Ranch Chicken	7,500	7,612,770	423,443	257	100	213	-60	NEWCREST	AC	60195
YRB2398	E45/4867	Ranch Chicken	7,500	7,612,810	423,473	257	100	213	-60	NEWCREST	AC	60195
YRB2399	E45/4867	Ranch Chicken	7,500	7,612,850	423,502	257	100	213	-60	NEWCREST	AC	60195
YRB2400	E45/4867	Ranch Chicken	7,510	7,612,891	423,531	257	100	213	-60	NEWCREST	AC	60195
YRB2401	E45/4867	Ranch Chicken	7,510	7,612,931	423,561	257	100	213	-60	NEWCREST	AC	60195
YRB2402	E45/4867	Ranch Chicken	7,510	7,612,972	423,590	257	100	213	-60	NEWCREST	AC	60195
YRB2403	E45/4867	Ranch Chicken	7,510	7,613,012	423,620	257	100	213	-60	NEWCREST	AC	60195
YRB2404	E45/4867	Ranch	7,510	7,613,012	423,649	257	100	213	-60	NEWCREST	AC	60195
YRB2405	E45/4867	Ranch Chicken	7,510	7,613,093	423,678	257	100	213	-60	NEWCREST	AC	60195
YRB2406	E45/4867	Ranch Chicken	7,510						-60	NEWCREST	AC	60195
YRB2407		Ranch Chicken		7,613,134	423,708	257	100	213	-60	NEWCREST		
YRB2408	E45/4867	Ranch	7,510	7,613,174	423,737	257	100	213		NEWCREST	AC	60195
YRB2409	E45/4867	Ranch	7,510	7,613,214	423,767	257	100	213	-60	NEWCREST	AC	60195
YRB2410	E45/4867	Ranch	7,520	7,613,255	423,796	257	100	213	-60	NEWCREST	AC	60195
	E45/4867	Ranch	7,520	7,613,295	423,825	257	100	213	-60		AC	60195
YRB2411 YRB2412	E45/4867	Chicken Ranch Chicken	6,460	7,612,095	424,118	257	100	213	-60	NEWCREST NEWCREST	AC	60195
	E45/4867	Ranch	6,460	7,612,135	424,148	257	120	213	-60		AC	60195
YRB2413	E45/4867	Chicken Ranch	6,460	7,612,176	424,178	257	100	213	-60	NEWCREST NEWCREST	AC	60195
YRB2414	E45/4867	Chicken Ranch	6,460	7,612,216	424,208	257	100	213	-60	NEWCREST NEWCREST	AC	60195
YRB2415	E45/4867	Chicken Ranch	6,020	7,611,976	424,532	257	100	213	-60	NEWCREST	AC	60195
YRB2416	E45/4867	Chicken Ranch	6,020	7,612,017	424,562	257	100	213	-60	NEWCREST	AC	60195
YRB2417	E45/4867	Chicken Ranch	6,020	7,612,057	424,592	257	100	213	-60	NEWCREST	AC	60195
YRB2418	E45/4867	Chicken Ranch	6,020	7,612,098	424,622	257	100	213	-60	NEWCREST	AC	60195
YRB2419	E45/4867	Chicken Ranch	6,020	7,612,138	424,652	257	100	213	-60	NEWCREST	AC	60195
YRB2420	E45/4867	Chicken	6,020	7,612,179	424,682	257	100	213	-60	NEWCREST	AC	60195

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
YRB2421	E45/4867	Ranch Chicken	6,020	7,612,219	424,712	257	100	213	-60	NEWCREST	AC	60195
YRB2422	E45/4867	Ranch Chicken	6,020	7,612,260	424,742	257	100	213	-60	NEWCREST	AC	60195
YRB2423	E45/4867	Ranch Chicken	5,800	7,611,856	424,694	257	100	213	-60	NEWCREST	AC	60195
YRB2424	E45/4867	Ranch Chicken	5,800	7,611,897	424,724	257	100	213	-60	NEWCREST	AC	60195
YRB2425	E45/4867	Ranch Chicken	5,800	7,611,937	424,754	257	100	213	-60	NEWCREST	AC	60195
YRB2426	E45/4867	Ranch Chicken	5,800	7,611,978	424,784	257	100	213	-60	NEWCREST	AC	60195
YRB2427	E45/4867	Ranch Chicken	5,800	7,612,018	424,814	257	100	213	-60	NEWCREST	AC	60195
YRB2428	E45/4867	Ranch Chicken	5,800	7,612,059	424,844	257	100	213	-60	NEWCREST	AC	60195
YRB2429	E45/4867	Ranch Chicken	5,800	7,612,099	424,874	257	100	213	-60	NEWCREST	AC	60195
YRB2430	E45/4867	Ranch Chicken	5,800	7,612,140	424,904	257	100	213	-60	NEWCREST	AC	60195
YRB2443	E45/4867	Ranch Chicken	9,040	7,613,698	422,388	257	120	213	-60	NEWCREST	AC	60195
YRB2451	E45/4867	Ranch Chicken	6,830	7,612,073	423,685	257	112	33	-60	NEWCREST	AC	60195
YRB2452	E45/4867	Ranch Chicken	6,830	7,612,154	423,744	257	120	213	-60	NEWCREST	AC	60195
YRB2453	E45/4867	Ranch Chicken	6,690	7,612,518	424,181	257	120	213	-60	NEWCREST	AC	60195
YRB2462	E45/4867	Ranch Chicken	5,350	7,611,455	424,898	257	104	213	-60	MT BURGESS	AC	60195
YRB2463	E45/4867	Ranch Chicken	5,350	7,611,495	424,928	257	100	213	-60	MT BURGESS	AC	60195
YRB2464	E45/4867	Ranch Chicken	5,350	7,611,536	424,958	257	100	213	-60	MT BURGESS	AC	60195
YRB2465	E45/4867	Ranch Chicken	5,360	7,611,576	424,988	257	104	213	-60	MT BURGESS	AC	60195
YRB2466	E45/4867	Ranch Chicken	5,360	7,611,617	425,018	257	107	213	-60	MT BURGESS	AC	60195
YRB2467	E45/4867	Ranch Chicken	5,360	7,611,663	425,052	257	104	213	-60	MT BURGESS	AC	60195
YRB2468	E45/4867	Ranch Chicken	5,360	7,611,698	425,078	257	100	213	-60	MT BURGESS	AC	60195
YRB2497	E45/4867	Ranch Chicken	5,920	7,611,561	424,336	257	11	0	-90	NEWCREST	RAB	60195
YRB2504	E45/4867	Ranch Chicken	4,820	7,610,978	425,150	257	23	0	-90	MT BURGESS	RAB	60195
YRB2505	E45/4867	Ranch Chicken	4,340	7,610,839	425,586	257	23	0	-90	MT BURGESS	RAB	60195
YRB2524	E45/4867	Ranch Chicken	6,270	7,611,563	423,934	257	14	0	-90	NEWCREST	RAB	60195
YRB2525	E45/4867	Ranch Chicken	6,400	7,611,759	423,939	257	17	0	-90	NEWCREST	RAB	60195
YRB2526	E45/4867	Ranch Chicken	6,840	7,611,739	423,534	257	14	0	-90	NEWCREST	RAB	60195
YRB4044	E45/4867	Ranch Chicken	6,690			257	99	33	-60	NEWCREST		60195
YRB4045	,	Ranch Chicken	•	7,612,466	424,142					NEWCREST	AC	
YRB4046	E45/4867	Ranch Chicken	6,690	7,612,450	424,130	257	100	33	-60	NEWCREST	AC	60195
	E45/4867	Ranch	6,580	7,612,479	424,277	257	99	33	-60	NEWCREST	AC	60195
YRB4047 YRB4048	E45/4867	Ranch	6,580	7,612,438	424,247	257	99	33	-60	NEWCREST	AC	60195
	E45/4867	Ranch	6,580	7,612,398	424,217	257	99	33	-60	NEWCREST	AC	60195
YRB4049	E45/4867	Ranch	6,580	7,612,357	424,187	257	100	33	-60	NEWCREST	AC	60195
YRB4050	E45/4867	Chicken Ranch	6,580	7,612,317	424,157	257	88	33	-60	NEWCREST	AC	60195
YRB4051	E45/4867	Chicken Ranch	6,800	7,612,599	424,115	257	100	33	-60		AC	60195
YRB4052	E45/4867	Chicken Ranch	6,800	7,612,558	424,085	257	100	33	-60	NEWCREST	AC	60195
YRB4053	E45/4867	Chicken Ranch	6,800	7,612,518	424,055	257	100	33	-60	NEWCREST	AC	60195
YRB4054	E45/4867	Chicken Ranch	6,800	7,612,477	424,025	257	100	33	-60	NEWCREST	AC	60195
YRB4055	E45/4867	Chicken Ranch	6,800	7,612,437	423,995	257	100	33	-60	NEWCREST	AC	60195
YRC001	E45/4867	Chicken Ranch	6,690	7,612,580	424,226	257	200	216	-60	NEWCREST	RC	60195
YRC001	E45/4867	Chicken Ranch	6,690	7,612,580	424,226	257	200	216	-58	NEWCREST	RC	60195
YRC001	E45/4867	Chicken Ranch	6,690	7,612,580	424,226	257	200	216	-60	NEWCREST	RC	60195
YRC001	E45/4867	Chicken Ranch	6,690	7,612,580	424,226	257	200	216	-58	NEWCREST	RC	60195
YRC002	E45/4867	Chicken Ranch	6,460	7,612,188	424,187	257	200	216	-60	NEWCREST	RC	60195
YRC002	E45/4867	Chicken Ranch	6,460	7,612,188	424,187	257	200	216	-60	NEWCREST	RC	60195

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
YRC002	E45/4867	Chicken Ranch	6,460	7,612,188	424,187	257	200	216	-58	NEWCREST	RC	60195
YRC002	E45/4867	Chicken Ranch	6,460	7,612,188	424,187	257	200	216	-58	NEWCREST	RC	60195
YRC003	E45/4867	Chicken Ranch	6,130	7,611,992	424,418	257	150	216	-60	NEWCREST	RC	60195
YRC003	E45/4867	Chicken Ranch	6,130	7,611,992	424,418	257	150	216	-60	NEWCREST	RC	60195
YRC003	E45/4867	Chicken Ranch	6,130	7,611,992	424,418	257	150	216	-58	NEWCREST	RC	60195
YRC003	E45/4867	Chicken	6,130	7,611,992	424,418	257	150	216	-58	NEWCREST	RC	60195
YRC003	E45/4867	Ranch Chicken	6,130	7,611,992	424,418	257	150	216	-58	NEWCREST	RC	60195
YRC004	E45/4867	Ranch Chicken	5,800	7,611,959	424,770	257	203	217	-59	NEWCREST	RC	60195
YRC004	E45/4867	Ranch Chicken	5,800	7,611,959	424,770	257	203	217	-60	NEWCREST	RC	60195
YRC004	E45/4867	Ranch Chicken	5,800	7,611,959	424,770	257	203	217	-60	NEWCREST	RC	60195
CRA407	E45/4867	Ranch Turkey	6,670	7,611,273	423,259	257	60	0	-90	MT BURGESS	AC	59445
CR131	E45/4867	Farm Turkey	6,560	7,611,426	423,497	257	50	213	-60	MIM	RAB	38092
CR132	E45/4867	Farm Turkey	6,560	7,611,466	423,527	257	50	213	-60	MIM	RAB	38092
CR133	E45/4867	Farm Turkey	6,560	7,611,507	423,557	257	50	213	-60	MIM	RAB	38092
CR134	E45/4867	Farm Turkey	6,570	7,611,547	423,587	257	50	213	-60	MIM	RAB	38092
CR135	E45/4867	Farm Turkey	6,570	7,611,588	423,617	257	50	213	-60	MIM	RAB	38092
CR136	E45/4867	Farm Turkey	6,570	7,611,628	423,647	257	50	213	-60	MIM	RAB	38092
CR137	E45/4867	Farm Turkey	6,570	7,611,669	423,677	257	50	213	-60	MIM	RAB	38092
CR168	E45/4867	Farm Turkey	7,390	7,611,835	422,860	257	50	213	-60	MIM	RAB	38092
CR169	E45/4867	Farm Turkey	7,390	7,611,876	422,890	257	50	213	-60	MIM	RAB	38092
CR170	· .	Farm Turkey			·	257		213	-60	MIM	RAB	38092
	E45/4867	Farm	7,400	7,611,916	422,920		50			MIM		
CR171	E45/4867	Farm	7,400	7,611,957	422,950	257	50	213	-60		RAB	38092
CR172	E45/4867	Turkey Farm	7,950	7,612,216	422,515	257	50	213	-60	MIM	RAB	38092
CR173	E45/4867	Turkey Farm	7,950	7,612,257	422,545	257	50	213	-60	MIM	RAB	38092
CR174	E45/4867	Turkey Farm	7,950	7,612,297	422,575	257	50	213	-60	MIM	RAB	38092
CR175	E45/4867	Turkey Farm	7,950	7,612,338	422,605	257	50	213	-60	MIM	RAB	38092
CR82	E45/4867	Turkey Farm	7,670	7,611,945	422,627	257	50	213	-60	MIM	RAB	38092
CR83	E45/4867	Turkey Farm	7,670	7,611,965	422,642	257	50	213	-60	MIM	RAB	38092
CR84	E45/4867	Turkey Farm	7,670	7,611,985	422,657	257	50	213	-60	MIM	RAB	38092
CR85	E45/4867	Turkey Farm	7,670	7,612,005	422,672	257	50	213	-60	MIM	RAB	38092
CR86	E45/4867	Turkey Farm	7,670	7,612,026	422,687	257	50	213	-60	MIM	RAB	38092
CR87	E45/4867	Turkey Farm	7,670	7,612,046	422,702	257	50	213	-60	MIM	RAB	38092
CR88	E45/4867	Turkey Farm	7,670	7,612,066	422,717	257	50	213	-60	MIM	RAB	38092
CR89	E45/4867	Turkey Farm	7,670	7,612,086	422,732	257	50	213	-60	MIM	RAB	38092
CR90	E45/4867	Turkey Farm	7,670	7,612,107	422,747	257	53	213	-60	MIM	RAB	38092
CR91	E45/4867	Turkey Farm	7,670	7,612,127	422,762	257	50	213	-60	MIM	RAB	38092
CRA408	E45/4867	Turkey Farm	6,670	7,611,406	423,358	257	60	0	-90	MT BURGESS	AC	59445
YRB2496	E45/4867	Turkey Farm	7,860	7,612,397	422,752	257	20	0	-90	NEWCREST	RAB	60195
YRB2561	E45/4867	Turkey Farm	6,740	7,611,768	423,550	257	38	0	-90	NEWCREST	RAB	60195
YRB2562	E45/4867	Turkey	6,620	7,611,564	423,534	257	41	0	-90	NEWCREST	RAB	60195
YRB2563	E45/4867	Farm Turkey	6,490	7,611,376	423,546	257	38	0	-90	NEWCREST	RAB	60195
YRB2564	E45/4867	Farm Turkey	7,070	7,611,721	423,147	257	42	0	-90	NEWCREST	RAB	60195
YRB2565	E45/4867	Farm Turkey	7,240	7,611,961	423,136	257	36	0	-90	NEWCREST	RAB	60195
YRB2566	E45/4867	Farm Turkey	7,720	7,612,161	422,736	257	35	0	-90	NEWCREST	RAB	60195
YRB2567	E45/4867	Farm Turkey	7,580	7,611,959	422,736	257	35	0	-90	NEWCREST	RAB	60195
	•	Farm	•		•							

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
YRB5043	E45/4867	Farm Turkey	7,700	7,611,997	422,634	257	111	213	-60	NEWCREST	AC	61906
YRB5044	E45/4867	Farm Turkey	7,700	7,612,037	422,663	257	90	213	-60	NEWCREST	AC	61906
YRB5045	E45/4867	Farm Turkey	7,700	7,612,078	422,692	257	108	213	-60	NEWCREST	AC	61906
YRB5046	E45/4867	Farm Turkey	7,700	7,612,118	422,722	257	77	213	-60	NEWCREST	AC	61906
YRB5047	E45/4867	Farm Turkey	7,700	7,612,098	422,707	257	63	213	-60	NEWCREST	AC	61906
YRB5048	-,	Farm Turkey	•		•				-60	NEWCREST		
	E45/4867	Farm	7,700	7,612,158	422,751	257	120	213		NEWCREST	AC	61906
YRB5049	E45/4867	Turkey Farm	7,710	7,612,199	422,781	257	96	213	-60		AC	61906
YRB5050	E45/4867	Turkey Farm	7,710	7,612,239	422,810	257	90	213	-60	NEWCREST	AC	61906
YRB5055	E45/4867	Turkey Farm	8,150	7,612,318	422,367	257	108	213	-60	NEWCREST	AC	61906
YRB5056	E45/4867	Turkey Farm	8,150	7,612,358	422,397	257	90	213	-60	NEWCREST	AC	61906
YRB5057	E45/4867	Turkey Farm	8,150	7,612,398	422,426	257	85	213	-60	NEWCREST	AC	61906
YRB5080	E45/4867	Turkey Farm	7,050	7,611,650	423,115	257	105	213	-60	NEWCREST	AC	61906
YRB5081	E45/4867	Turkey	7,050	7,611,690	423,144	257	100	213	-60	NEWCREST	AC	61906
YRB5082	E45/4867	Farm Turkey	7,050	7,611,731	423,174	257	102	213	-60	NEWCREST	AC	61906
YRB5083	E45/4867	Farm Turkey	7,050	7,611,771	423,203	257	102	213	-60	NEWCREST	AC	61906
YRB5084	E45/4867	Farm Turkey	7,050	7,611,812	423,232	257	102	213	-60	NEWCREST	AC	61906
YRB5085	E45/4867	Farm Turkey	7,480	7,611,839	422,767	257	102	213	-60	NEWCREST	AC	61906
	,	Farm			•					NEWCREST		
YRB5086	E45/4867	Turkey Farm	7,480	7,611,880	422,797	257	102	213	-60		AC	61906
YRB5087	E45/4867	Turkey Farm	7,480	7,611,920	422,826	257	102	213	-60	NEWCREST	AC	61906
YRB5088	E45/4867	Turkey Farm	7,480	7,611,961	422,855	257	102	213	-60	NEWCREST	AC	61906
YRB5089	E45/4867	Turkey Farm	7,480	7,612,001	422,885	257	102	213	-60	NEWCREST	AC	61906
YRB5090	E45/4867	Turkey Farm	7,480	7,612,041	422,914	257	85	213	-60	NEWCREST	AC	61906
YRB5091	E45/4867	Turkey	7,480	7,612,082	422,944	257	102	213	-60	NEWCREST	AC	61906
YRB5092	E45/4867	Turkey	7,930	7,612,120	422,463	257	102	213	-60	NEWCREST	AC	61906
YRB5093	E45/4867	Farm Turkey	7,930	7,612,161	422,492	257	102	213	-60	NEWCREST	AC	61906
YRB5094	E45/4867	Farm Turkey	7,930	7,612,201	422,522	257	102	213	-60	NEWCREST	AC	61906
YRB5095	E45/4867	Farm Turkey	7,930	7,612,242	422,551	257	95	213	-60	NEWCREST	AC	61906
YRB5096	E45/4867	Farm Turkey	7,940	7,612,282	422,581	257	102	213	-60	NEWCREST	AC	61906
YRB5097	E45/4867	Farm Turkey		7,612,322					-60	NEWCREST	AC	
		Farm	7,940		422,610	257	102	213				61906
YRB5101	E45/4867	Turkey Farm	8,370	7,612,686	422,390	257	102	213	-60	NEWCREST	AC	61906
YRB5102	E45/4867	Turkey Farm	8,150	7,612,431	422,450	257	99	213	-60	NEWCREST	AC	61906
CRA415 CRA416	E45/4867 E45/4867	Wobbleys Wobbleys	4,450 4,450	7,609,559 7,609,639	424,498 424,554	257 257	63 62	0	-90 -90	MT BURGESS MT BURGESS	AC AC	59445 59445
CRA417	E45/4867	Wobbleys	4,450	7,609,688	424,594	257	61	0	-90	MT BURGESS	AC	59445
YAC0954	E45/4867	Wobbleys	4,570	7,609,571	424,368	257	21	0	-90	NORMANDY	AC	57455
CRA438 SM6-2	E45/4518 E45/4518		3,340 7,880	7,609,346 7,610,012	425,598 420,922	257 257	53 40	0	-90 -90	MT BURGESS NEWCREST	AC DDH	104954 104954
SM6-3	E45/4518		7,880	7,609,987	420,922	257	40	0	-90	NEWCREST	DDH	104954
SM6-4	E45/4518		8,020	7,609,959	420,731	257	40	0	-90	NEWCREST	DDH	104954
CSMH100 CSMH101	E45/4518 E45/4518	282 Reef 282 Reef	6,010 6,000	7,608,858 7,608,871	422,186 422,202	257 257	28 28	90 90	-60 -60	DUVAL DUVAL	RAB RAB	104954 104954
CSMH73	E45/4518	282 Reef	5,590	7,608,396	422,313	257	25	90	-60	DUVAL	RAB	104954
CSMH74	E45/4518	282 Reef	5,580	7,608,407	422,330	257	28	90	-60	DUVAL	RAB	104954
CSMH75 CSMH76	E45/4518 E45/4518	282 Reef 282 Reef	5,580 5,570	7,608,419 7,608,430	422,347 422,363	257 257	28 28	90 90	-60 -60	DUVAL DUVAL	RAB RAB	104954 104954
CSMH77	E45/4518	282 Reef	5,560	7,608,441	422,380	257	28	90	-60	DUVAL	RAB	104954
CSMH78	E45/4518	282 Reef	5,560	7,608,452	422,396	257	28	90	-60	DUVAL	RAB	104954
CSMH79 CSMH80	E45/4518 E45/4518	282 Reef 282 Reef	5,550 5,540	7,608,463 7,608,475	422,413 422,429	257 257	28 28	90 90	-60 -60	DUVAL DUVAL	RAB RAB	104954 104954
CSMH81	E45/4518	282 Reef	5,530	7,608,497	422,463	257	28	90	-60	DUVAL	RAB	104954
CSMH82	E45/4518	282 Reef	5,510	7,608,519	422,496	257	28	90	-60	DUVAL	RAB	104954
CSMH83	E45/4518	282 Reef	5,500	7,608,542	422,529	257	28	90	-60	DUVAL	RAB	104954

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
CSMH84	E45/4518	282 Reef	5,480	7,608,564	422,562	257	28	90	-60	DUVAL	RAB	104954
CSMH85	E45/4518	282 Reef	5,470	7,608,587	422,595	257	28	90	-60	DUVAL	RAB	104954
CSMH86 CSMH87	E45/4518 E45/4518	282 Reef 282 Reef	5,460 5,440	7,608,609 7,608,631	422,628 422,661	257 257	28 28	90 90	-60 -60	DUVAL DUVAL	RAB RAB	104954 104954
CSMH88	E45/4518	282 Reef	5,430	7,608,654	422,694	257	28	90	-60	DUVAL	RAB	104954
CSMH89	E45/4518	282 Reef	5,410	7,608,676	422,727	257	28	90	-60	DUVAL	RAB	104954
CSMH90	E45/4518	282 Reef	5,400	7,608,699	422,761	257	28	90	-60	DUVAL	RAB	104954
CSMH91	E45/4518	282 Reef 282 Reef	5,380	7,608,732	422,810	257	28	90	-60	DUVAL	RAB	104954
CSMH92 CSMH93	E45/4518 E45/4518	282 Reef	5,360 5,310	7,608,766 7,608,847	422,860 422,980	257 257	28 28	90 90	-60 -60	DUVAL	RAB RAB	104954 104954
CSMH94	E45/4518	282 Reef	6,040	7,608,780	422,090	257	25	90	-60	DUVAL	RAB	104954
CSMH95	E45/4518	282 Reef	6,040	7,608,793	422,106	257	25	90	-60	DUVAL	RAB	104954
CSMH96	E45/4518	282 Reef	6,030	7,608,806	422,122	257	25	90	-60	DUVAL	RAB	104954
CSMH97	E45/4518	282 Reef 282 Reef	6,030	7,608,819	422,138	257	25	90	-60	DUVAL DUVAL	RAB	104954
CSMH98 CSMH99	E45/4518 E45/4518	282 Reef	6,020 6,010	7,608,832 7,608,845	422,154 422,170	257 257	25 28	90 90	-60 -60	DUVAL	RAB RAB	104954 104954
P1SR2H1	E45/4518	282 Reef	6,380	7,608,645	421,607	257	30	231	-60	GEOPECKO	AC	104954
P1SR2H2	E45/4518	282 Reef	6,390	7,608,620	421,576	257	30	231	-60	GEOPECKO	AC	104954
P1SR2H3	E45/4518	282 Reef	6,400	7,608,597	421,547	257	27	231	-60	GEOPECKO	AC	104954
P1SR2H4	E45/4518	282 Reef 282 Reef	6,400	7,608,576	421,522	257	12	0	-90	UNK	UNK	104954
P1SR4H1 SM8-1	E45/4518 E45/4518	Bean	6,540 5,440	7,608,661 7,608,265	421,429 422,386	257 257	27 40	245 0	-60 -90	GEOPECKO NEWCREST	AC DDH	104954 104954
	· · · · · ·	Counters	·							NEWCREST		
SM8-2 SM8-3	E45/4518 E45/4518	Counters	5,360 5,290	7,608,164 7,608,058	422,396 422,402	257 257	40 40	0	-90 -90	NEWCREST	DDH DDH	104954 104954
SM8-4	E45/4518	Counters Bean	5,210	7,607,965	422,417	257	40	0	-90	NEWCREST	DDH	104954
SM8-5	E45/4518	Counters Bean	5,140	7,607,861	422,424	257	40	0	-90	NEWCREST	DDH	104954
SM8-6	E45/4518	Counters Bean Counters	5,070	7,607,765	422,431	257	40	0	-90	NEWCREST	DDH	104954
SMH128	E45/4518	Bean Counters	6,050	7,607,991	421,487	257	10	0	-90	UNK	UNK	104954
SMH129	E45/4518	Bean Counters	6,020	7,607,972	421,503	257	10	0	-90	UNK	UNK	104954
CR317	E45/4518	Big Banana Big	5,750	7,610,799	423,947	257	50	33	-60 -60	MIM	RAB	65268
CR318 CR319	E45/4518 E45/4518	Banana Big	5,750 5,750	7,610,767 7,610,726	423,924 423,894	257 257	60 50	33	-60	MIM	RAB RAB	65268 65268
CR320	E45/4518	Banana Big	5,750	7,610,686	423,864	257	50	33	-60	MIM	RAB	65268
CR321	E45/4518	Banana Big	5,750	7,610,645	423,835	257	63	33	-60	MIM	RAB	65268
CR322	E45/4518	Banana Big Banana	5,750	7,610,605	423,805	257	50	33	-60	MIM	RAB	65268
CR323	E45/4518	Big Banana	5,750	7,610,565	423,775	257	50	33	-60	MIM	RAB	65268
CR324	E45/4518	Big Banana	5,750	7,610,524	423,746	257	50	33	-60	MIM	RAB	65268
CR325	E45/4518	Big Banana	5,750	7,610,484	423,716	257	50	33	-60	MIM	RAB	65268
CR326 CR326A	E45/4518 E45/4518	Big Banana Big	5,750 5,750	7,610,443 7,610,504	423,686 423,731	257 257	50 50	33 35	-60 -60	MIM	RAB RAB	65268 65268
CR327	E45/4518	Banana Big	5,740	7,610,403	423,657	257	50	33	-60	MIM	RAB	65268
CR327A	E45/4518	Banana Big	5,750	7,610,544	423,761	257	50	35	-60	MIM	RAB	65268
CR328	E45/4518	Banana Big Banana	5,800	7,610,534	423,691	257	75	35	-60	MIM	RAB	65268
CR329	E45/4518	Big Banana	5,800	7,610,554	423,705	257	50	35	-60	MIM	RAB	65268
CR330	E45/4518	Big Banana	5,690	7,610,494	423,786	257	62	35	-60	NORMANDY	RAB	65269
CR331	E45/4518	Big Banana	5,690	7,610,515	423,801	257	50	35	-60	NORMANDY	RAB	65269
CR332	E45/4518	Big Banana Big	5,860	7,610,563	423,650	257	74	35	-60	MIM	RAB	65268
CR333 CRA412	E45/4518 E45/4518	Big Banana Big	5,860 5,560	7,610,583 7,610,688	423,665 424,087	257 257	65 65	35	-60 -90	MIM MT BURGESS	RAB AC	65268 104954
CRA412	E45/4518	Banana Big	5,560	7,610,628	424,037	257	27	0	-90	MT BURGESS	AC	104954
CRA414	E45/4518	Banana Big	5,560	7,610,558	423,989	257	63	0	-90	MT BURGESS	AC	104954
CRAC01	E45/4518	Banana Big	5,740	7,610,515	423,742	257	80	33	-90	MIM	AC	104954
		Banana										

CRACO3 CRACO4 CRACO5 CRACO6 CRAC14 CRAC15	E45/4518 E45/4518 E45/4518	Banana Big	North)	(m)	(m)	RL (m)	Depth (m)	Azimuth (°)	Dip (°)	Company	Metho d	MEX Report No.
CRAC05 CRAC06 CRAC14 CRAC15	•	D	5,560	7,610,358	423,838	257	80	33	-90	NORMANDY	AC	104954
CRAC06 CRAC14 CRAC15	F45/4518	Banana Big	5,550	7,610,317	423,808	257	80	33	-90	NORMANDY	AC	104954
CRAC14 CRAC15	L+3/+310	Banana Big	5,550	7,610,277	423,778	257	62	33	-90	NORMANDY	AC	104954
CRAC15	E45/4518	Banana Big	5,560	7,610,398	423,868	257	80	33	-90	NORMANDY	AC	104954
	E45/4518	Banana Big	5,770	7,610,526	423,726	257	68	33	-90	MIM	AC	104954
CDV217	E45/4518	Banana Big	5,720	7,610,487	423,747	257	80	33	-90	NORMANDY	AC	104954
CRX317	E45/4518	Banana Big	5,750	7,610,797	423,949	257	50	0	-90	UNK	UNK	104954
CRX318	E45/4518	Banana Big	5,750	7,610,765	423,926	257	60	0	-90	UNK	UNK	104954
CRX319	E45/4518	Banana Big	5,750	7,610,725	423,896	257	50	0	-90	UNK	UNK	104954
CRX320	E45/4518	Banana Big	5,750	7,610,684	423,866	257	50	0	-90	UNK	UNK	104954
CRX321	E45/4518	Banana Big	5,750	7,610,644	423,837	257	63	0	-90	UNK	UNK	104954
CRX322	E45/4518	Banana Big	5,750	7,610,603	423,807	257	50	0	-90	UNK	UNK	104954
CRX323	E45/4518	Banana Big	5,750	7,610,563	423,777	257	50	0	-90	UNK	UNK	104954
CRX324	E45/4518	Banana Big	5,740	7,610,523	423,748	257	50	0	-90	UNK	UNK	104954
CRX325	E45/4518	Banana Big	5,740	7,610,482	423,718	257	50	0	-90	UNK	UNK	104954
CRX326	E45/4518	Banana Big	5,740	7,610,442	423,688	257	50	0	-90	UNK	UNK	104954
CRX326A	E45/4518	Banana Big	5,740	7,610,502	423,733	257	50	0	-90	UNK	UNK	104954
CRX327	E45/4518	Banana Big	5,740	7,610,401	423,659	257	50	0	-90	UNK	UNK	104954
CRX327A	E45/4518	Banana Big	5,740	7,610,543	423,763	257	50	0	-90	UNK	UNK	104954
CRX328	E45/4518	Banana Big	5,800	7,610,532	423,703	257	75	0	-90	UNK	UNK	104954
CRX329	E45/4518	Banana Big	5,800	7,610,552	423,707	257	50	0	-90	UNK	UNK	104954
CRX330	E45/4518	Banana Big	5,690	7,610,493	423,788	257	62	0	-90	UNK	UNK	104954
	E45/4518	Banana Big	,			257	50	0	-90	UNK	UNK	
CRX331	,	Banana Big	5,690	7,610,513	423,803					UNK		104954
CRX332	E45/4518	Banana	5,850	7,610,562	423,652	257	74	0	-90	UNK	UNK	104954
CRX333	E45/4518	Big Banana	5,850	7,610,582	423,667	257	65	0	-90	UNK	UNK	104954
CDR1203 1	E45/4518	C9	8,460	7,610,930	420,960	257	198	198	-60		UNK	104954
CDR1203 2	E45/4518	C9	8,470	7,610,790	420,840	257	204	204	-60	UNK	UNK	104954
CDR1203	E45/4518	C9	8,480	7,610,630	420,710	257	200	200	-60	UNK	UNK	104954
3 SM1A-13	E45/4518	C9	8,590	7,610,741	420,669	257	40	145	-70	NEWCREST	DDH	104954
SM1A-14	E45/4518	C9	8,530	7,610,691	420,701	257	40	145	-70	NEWCREST	DDH	104954
SM1A-15 SM1A-16	E45/4518 E45/4518	C9 C9	8,480 8,460	7,610,665 7,610,645	420,733 420,742	257 257	40 40	145 145	-70 -70	NEWCREST NEWCREST	DDH DDH	104954 104954
SM1A-17	E45/4518	C9	8,440	7,610,626	420,742	257	40	145	-70	NEWCREST	DDH	104954
CSMH214	E45/4518	Pajero	4,030	7,608,098	423,870	257	25	339	-60	BATTLE	RAB	19291
CSMH215	E45/4518	Pajero	4,010	7,608,079	423,876	257	25	339	-60	MOUNTAIN BATTLE MOUNTAIN	RAB	19291
CSMH216	E45/4518	Pajero	3,990	7,608,060	423,883	257	25	339	-60	BATTLE	RAB	19291
CSMH217	E45/4518	Pajero	3,970	7,608,041	423,889	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH218	E45/4518	Pajero	3,950	7,608,022	423,896	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH219	E45/4518	Pajero	3,940	7,608,004	423,903	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH220	E45/4518	Pajero	3,920	7,607,987	423,910	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH221	E45/4518	Pajero	3,900	7,607,967	423,917	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH222	E45/4518	Pajero	3,830	7,607,893	423,945	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH223	E45/4518	Pajero	3,810	7,607,875	423,951	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH240	E45/4518	Pajero	3,880	7,607,950	423,924	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH241	E45/4518	Pajero	3,860	7,607,930	423,931	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH242	E45/4518	Pajero	3,840	7,607,930	423,931	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
CSMH243	E45/4518	Pajero	3,790	7,607,857	423,958	257	25	339	-60	BATTLE MOUNTAIN	RAB	19291
CSMH244	E45/4518	Pajero	3,770	7,607,839	423,966	257	25	339	-60	BATTLE MOUNTAIN	RAB	19291
CSMH245	E45/4518	Pajero	3,750	7,607,820	423,972	257	25	339	-60	BATTLE	RAB	19291
CSMH246	E45/4518	Pajero	3,730	7,607,800	423,979	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH247	E45/4518	Pajero	3,720	7,607,781	423,986	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH248	E45/4518	Pajero	3,700	7,607,763	423,994	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH249	E45/4518	Pajero	3,680	7,607,745	424,001	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH250	E45/4518	Pajero	3,660	7,607,727	424,008	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH251	E45/4518	Pajero	3,640	7,607,707	424,015	257	25	339	-60	MOUNTAIN BATTLE	RAB	19291
CSMH252		Pajero			·					MOUNTAIN BATTLE		
	E45/4518		3,620	7,607,688	424,022	257	25	339	-60	MOUNTAIN	RAB	19291
CSMH253	E45/4518	Pajero	3,600	7,607,669	424,029	257	25	339	-60	BATTLE MOUNTAIN	RAB	19291
CSMH254	E45/4518	Pajero	3,580	7,607,650	424,036	257	25	339	-60	BATTLE MOUNTAIN	RAB	19291
CSMH255	E45/4518	Pajero	3,990	7,607,968	423,811	257	60	339	-60	BATTLE MOUNTAIN	RAB	19291
CSMH256	E45/4518	Pajero	4,140	7,607,981	423,654	257	45	339	-60	BATTLE MOUNTAIN	RAB	19291
CSMH257	E45/4518	Pajero	4,280	7,607,926	423,457	257	55	339	-60	BATTLE MOUNTAIN	RAB	19291
CSMH319	E45/4518	Pajero	4,930	7,607,999	422,770	257	25	343	-60	BATTLE MOUNTAIN	RAB	19291
CSMH320	E45/4518	Pajero	4,910	7,607,982	422,773	257	25	343	-60	BATTLE	RAB	19291
CSMH321	E45/4518	Pajero	4,900	7,607,965	422,775	257	27	343	-60	MOUNTAIN BATTLE	RAB	19291
CSMH322	E45/4518	Pajero	4,890	7,607,947	422,778	257	27	343	-60	MOUNTAIN BATTLE	RAB	19291
CSMH323	E45/4518	Pajero	4,870	7,607,930	422,780	257	27	343	-60	MOUNTAIN BATTLE	RAB	19291
CSMH324	E45/4518	Pajero	4,860	7,607,913	422,782	257	25	343	-60	MOUNTAIN BATTLE	RAB	19291
CSMH325	E45/4518	Pajero	4,850	7,607,895	422,785	257	25	343	-60	MOUNTAIN BATTLE	RAB	19291
CSMH326	E45/4518	Pajero	4,830	7,607,878	422,787	257	25	343	-60	MOUNTAIN BATTLE	RAB	19291
CSMH327	E45/4518	Pajero	4,820	7,607,861	422,790	257	27	343	-60	MOUNTAIN BATTLE	RAB	19291
CSMH328	E45/4518	Pajero	4,800	7,607,844	422,792	257	27	343	-60	MOUNTAIN BATTLE	RAB	19291
CSMH329	E45/4518	Pajero	4,790	7,607,826	422,795	257	25	343	-60	MOUNTAIN BATTLE	RAB	19291
CSMH330	•	Pajero	•		·	257			-60	MOUNTAIN BATTLE		19291
	E45/4518	Pajero	4,780	7,607,809	422,797		26	343		MOUNTAIN BATTLE	RAB	
CSMH331	E45/4518		4,760	7,607,792	422,800	257	28	343	-60	MOUNTAIN	RAB	19291
CSMH332	E45/4518	Pajero	4,750	7,607,774	422,802	257	27	343	-60	BATTLE MOUNTAIN	RAB	19291
CSMH333	E45/4518	Pajero	4,740	7,607,757	422,804	257	27	343	-60	BATTLE MOUNTAIN	RAB	19291
CSMH345	E45/4518	Pajero	4,000	7,608,106	423,907	257	70	343	-60	BATTLE MOUNTAIN	RAB	104954
SM7-1	E45/4518	Pajero	4,610	7,608,239	423,313	257	40	89	-70	NEWCREST	DDH	104954
SM7-10 SM7-11	E45/4518 E45/4518	Pajero Pajero	5,010 5,060	7,608,257 7,608,255	422,875 422,817	257 257	40 40	89 89	-70 -70	NEWCREST NEWCREST	DDH DDH	104954 104954
SM7-11	E45/4518	Pajero	5,100	7,608,259	422,772	257	40	89	-70	NEWCREST	DDH	104954
SM7-2	E45/4518	Pajero	4,650	7,608,235	423,263	257	40	89	-70	NEWCREST	DDH	104954
SM7-3	E45/4518	Pajero	4,690	7,608,241	423,220	257	40	89	-70	NEWCREST	DDH	104954
SM7-4	E45/4518	Pajero	4,740	7,608,243	423,162	257	40	89	-70	NEWCREST	DDH	104954
SM7-5	E45/4518	Pajero Pajero	4,780	7,608,247	423,120	257	40	89	-70	NEWCREST NEWCREST	DDH	104954
SM7-6 SM7-7	E45/4518 E45/4518	Pajero	4,840 4,870	7,608,247 7,608,243	423,061 423,019	257 257	40 40	89 89	-70 -70	NEWCREST	DDH DDH	104954 104954
SM7-8	E45/4518	Pajero	4,920	7,608,245	422,963	257	40	89	-70	NEWCREST	DDH	104954
SM7-9	E45/4518	Pajero	4,960	7,608,249	422,918	257	40	89	-70	NEWCREST	DDH	104954
CRA403	E45/4518	Pajero North	6,660	7,610,753	422,882	257	60	0	-90	MT BURGESS	AC	104954
CRA404	E45/4518	Pajero North	6,660	7,610,886	422,976	257	60	0	-90	MT BURGESS	AC	104954
CRA405	E45/4518	Pajero North	6,670	7,611,016	423,069	257	60	0	-90	MT BURGESS	AC	104954
CRA406	E45/4518	Pajero North	6,670	7,611,144	423,166	257	60	0	-90	MT BURGESS	AC	104954
SHR010	E45/4518	Pajero North	6,290	7,609,486	422,337	257	118	0	-60	NEWCREST	RC	104954
SHR011	E45/4518	Pajero	6,280	7,609,576	422,417	257	88	0	-60	NEWCREST	RC	104954
SHR012	E45/4518	North Pajero	6,280	7,609,736	422,537	257	150	0	-60	NEWCREST	RC	104954

ANTIPAMINERALS

Hole ID	Tenement ID	Area	Cross Section (Local Grid North)	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Company	Drill Metho d	WA- MEX Report No.
SHR013	E45/4518	North Pajero North	6,260	7,609,901	422,687	257	150	0	-60	NEWCREST	RC	104954
SHR014	E45/4518	Pajero North	6,310	7,610,061	422,757	257	150	0	-60	NEWCREST	RC	104954
SHR015	E45/4518	Pajero North	6,260	7,610,206	422,922	257	92	0	-60	NEWCREST	RC	104954
SHR016	E45/4518	Pajero North	6,250	7,610,371	423,052	257	126	220	-60	NEWCREST	RC	104954
SHR017	E45/4518	Pajero North	6,270	7,610,101	422,824	257	150	0	-60	NEWCREST	RC	104954
SHR018	E45/4518	Pajero North	6,270	7,610,146	422,867	257	136	0	-60	NEWCREST	RC	104954
SHR019	E45/4518	Pajero North	6,280	7,609,996	422,742	257	160	0	-60	NEWCREST	RC	104954
SM3-1	E45/4518	Pajero North	6,420	7,610,093	422,648	257	40	0	-90	NEWCREST	DDH	104954
SM3-11	E45/4518	Pajero North	6,440	7,609,705	422,334	257	40	0	-90	NEWCREST	DDH	104954
SM3-13	E45/4518	Pajero North	6,450	7,609,633	422,269	257	40	0	-90	NEWCREST	DDH	104954
SM3-15	E45/4518	Pajero North	6,450	7,609,546	422,204	257	40	0	-90	NEWCREST	DDH	104954
SM3-3	E45/4518	Pajero North	6,410	7,610,016	422,601	257	40	0	-90	NEWCREST	DDH	104954
SM3-5	E45/4518	Pajero North	6,430	7,609,932	422,523	257	40	0	-90	NEWCREST NEWCREST	DDH	104954
SM3-7	E45/4518	Pajero North Pajero	6,430	7,609,860	422,469	257	40	0	-90	NEWCREST	DDH	104954
SM3-9 BL89-1	E45/4518	North Wobbleys	6,430	7,609,781	422,401	257	40 63	0	-90 -90	UNK	DDH	104954 104954
BL89-1	E45/4518	Wobbleys	4,610	7,609,161	424,012	257	90	0	-90	UNK	UNK	
P1NE1H1	E45/4518	Wobbleys	4,610	7,609,161	424,012	257				GEOPECKO		104954
	E45/4518	Wobbleys	4,910	7,609,177	423,679	257	25	222	-60		AC	104954
P1NE1H2	E45/4518		4,880	7,609,397	423,876	257	24	222	-60	GEOPECKO	AC	104954
P1NE1H3	E45/4518	Wobbleys	4,900	7,609,417	423,868	257	35	222	-60	GEOPECKO	AC	104954
P1NE1H4	E45/4518	Wobbleys	4,890	7,609,367	423,850	257	35	222	-50	GEOPECKO	AC	104954
P1NE1H5	E45/4518	Wobbleys	4,890	7,609,345	423,830	257	23	222	-50	GEOPECKO	AC	104954
P1NE1H6	E45/4518	Wobbleys	4,890	7,609,332	423,818	257	20	222	-50	GEOPECKO	AC	104954
P1NE1H7	E45/4518	Wobbleys	4,890	7,609,319	423,807	257	35	222	-50	GEOPECKO	AC	104954
P1NE1H8	E45/4518	Wobbleys	4,900	7,609,299	423,789	257	24	222	-48	GEOPECKO	AC	104954
P1NE2H1	E45/4518	Wobbleys	4,930	7,609,348	423,783	257	25	231	-55	GEOPECKO	AC	104954
SM2-1	E45/4518	Wobbleys	4,850	7,609,425	423,936	257	40	220	-70	NEWCREST	DDH	104954
SM2-10	E45/4518	Wobbleys	4,890	7,609,070	423,627	257	40	220	-70	NEWCREST	DDH	104954
SM2-11	E45/4518	Wobbleys	4,890	7,609,039	423,599	257	40	220	-70	NEWCREST	DDH	104954
SM2-13	E45/4518	Wobbleys	4,900	7,608,957	423,526	257	40	220	-70	NEWCREST	DDH	104954
SM2-15	E45/4518	Wobbleys	4,900	7,608,879	423,466	257	40	220	-70	NEWCREST	DDH	104954
SM2-17	E45/4518	Wobbleys	4,910	7,608,807	423,404	257	40	220	-70	NEWCREST	DDH	104954
SM2-2	E45/4518	Wobbleys	4,850	7,609,384	423,900	257	40	220	-70	NEWCREST	DDH	104954
SM2-3	E45/4518	Wobbleys	4,870	7,609,345	423,856	257	40	220	-70	NEWCREST	DDH	104954
SM2-4	E45/4518	Wobbleys	4,860	7,609,305	423,835	257	40	220	-70	NEWCREST	DDH	104954
SM2-5	E45/4518	Wobbleys	4,870	7,609,256	423,788	257	40	220	-70	NEWCREST	DDH	104954
SM2-6	E45/4518	Wobbleys	4,870	7,609,228	423,762	257	40	220	-70	NEWCREST	DDH	104954
SM2-7	E45/4518	Wobbleys	4,880	7,609,193	423,731	257	40	220	-70	NEWCREST	DDH	104954
SM2-8	E45/4518	Wobbleys	4,880	7,609,139	423,690	257	40	220	-70	NEWCREST	DDH	104954
SM2-9	E45/4518	Wobbleys	4,880	7,609,113	423,661	257	40	220	-70	NEWCREST	DDH	104954
J •	1.1, .010		.,000	.,,	,002							

JORC Code, 2012 Edition - Table 1a Drill Hole Data

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
		 Refer to the Addendum to JORC Table 1a for individual detailed descriptions of the JORC Criteria for the various Chicken Ranch area exploration licence application (E45/4867) and Pajero area granted exploration licence (E45/4518) exploration programmes completed between 1975 to 2001 (NB: No on-ground exploration post 2001) which are the subject of this public disclosure.
Sampling	Nature and quality of sampling (eg cut channels, random chips, or	Exploration and Source Data Overview:
techniques	specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Drill based exploration of the Chicken Ranch area, and related information which is the subject of this Public Disclosure, dates back to 1975. Drill hole and all other exploration data generated prior to 1984 predates the commencement of compulsory annual digital reporting of exploration datasets to the Western Australian DMIRS. Antipa has methodically manually captured (from paper copies) all relevant exploration pre-1984 data for these areas into its proprietary digital exploration databases and GIS systems. The most recent drilling on record is from 2001. Therefore, all exploration was reported prior to the mandatory implementation of the JORC Code 2012 Edition (i.e. the 1st December 2013) and related public reporting requirements. The exploration of the Chicken Ranch area was conducted by the following resource companies: Newmont Pty Ltd (early 1970's to 1986); Carr Boyd Minerals Limited (1973 to 1975); Geopeko Limited (JV with Carr Boyd) (1975 to 1978); Marathon Petroleum Australia Limited (WMC) (1980);

Criteria	JORC Code explanation	Commentary
		 Duval Mining (Australia) Limited (Carr Boyd JV with Picon Exploration Pty Ltd) (1984 to 1986); Mount Burgess Gold Mining Company N.L. (1989 to 2001); Carpentaria (MIM JV with Mount Burgess) (1990 to 1996); Normandy (JV with Mount Burgess) (1998 to 2000); Newcrest Mining Limited (2009 to 2015); and Quantum Resources Limited (2012 to 2017). Technical reports are publicly accessible via the DMIRS's online WA Mineral Exploration Report system (i.e. WAMEX). The specific WAMEX reports related to the exploration information the subject of this public disclosure have been referenced in Table 2, JORC Table 1 and associated Addendum, and Appendix 2.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Refer to the Addendum to JORC Table 1.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Refer to the Addendum to JORC Table 1.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Refer to the Addendum to JORC Table 1.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	Refer to the Addendum to JORC Table 1.

Criteria	JORC Code explanation	Commentary
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Refer to the Addendum to JORC Table 1.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Refer to the Addendum to JORC Table 1.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 km = kilometre; m = metre; mm = millimetre. For drill hole collar location information refer to Addendum to JORC Table 1. The drilling coordinates are all in GDA94 MGA Zone 51 coordinates. The Company has adopted and referenced one specific local grid across the Chicken Ranch area ('Chickenranch Grid') which is defined below. References in the text and deposit diagrams are all in this Local Grid. Table 2 and Appendix 2 are in GDA94 / MGA Zone 51.

Criteria	JORC Code explanation	Commentary
		Chicken Ranch Local Grid 2-Point Transformation Data:
		Point # 1 =
		 Chicken Ranch Local Grid 10,000m east is 424,724.5m east in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 5,800m north is 7,611,897.1m north in GDA94 / MGA Zone 51;
		Point # 2 =
		 Chicken Ranch Local Grid 10,000m east is 422,694.5m east in GDA94 / MGA Zone 51;
		 Chicken Ranch Local Grid 8,600m north is 7,613,433.2m north in GDA94 / MGA Zone 51;
		 Chicken Ranch Local Grid North (360°) is equal to 303° in GDA94 / MGA Zone 51;
		 Chicken Ranch Local Grid elevation is equal to GDA94 / MGA Zone 51.
		 The topographic surface has been defaulted to 257m RL.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Refer to the Addendum to JORC Table 1.
Orientation of data in relation to geological	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation 	 The location and orientation of the Chicken Ranch drilling is appropriate given the strike, dip and morphology of the mineralisation. No consistent and/or documented material sampling bias resulting from a structural orientation has been identified at Chicken Ranch at
structure	of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	this point; however, both folding and multiple vein directions have been recorded via diamond drilling and surface mapping.
Sample security	The measures taken to ensure sample security.	Refer to the Addendum to JORC Table 1.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Refer to the Addendum to JORC Table 1.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Tenement E45/4867 was applied for by Antipa Resources Pty Ltd on the 19th of January 2017. Multiple parties 'simultaneously' lodged applications over the area, and the decision went to a ballot before the Warden's Court in July 2017. Tenement E45/4867 was awarded in full to Antipa. No existing royalties or prior agreements apply. Antipa maintains a positive relationship with the Martu People, who are Native Title parties in the area. The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The exploration of the Chicken Ranch area was conducted by the following major resources companies: Newmont Pty Ltd (early 1970s to 1986); Carr Boyd Minerals Limited (1973 to 1975); Geopeko Limited (JV with Carr Boyd) (1975 to 1978); Marathon Petroleum Australia Limited (1979); Western Mining Corporation Limited (WMC) (1980); Duval Mining (Australia) Limited (Carr Boyd JV with Picon Exploration Pty Ltd) (1984 to 1986); Mount Burgess Gold Mining Company N.L. (1989 to 2001); Carpentaria (MIM JV with Mount Burgess) (1990 to 1996); Normandy (JV with Mount Burgess) (1998 to 2000); Newcrest Mining Limited (2009 to 2015); and

Criteria	JORC Code explanation	Commentary
		 Quantum Resources Limited (2012 to 2017).
Geology	Deposit type, geological setting and style of mineralisation.	Chicken Ranch Tenement Area:
		 The geology of the is dominated by a northwest trending sequence of moderate to steeply east dipping meta-sediments, including siltstone, carbonate siltstone, dolomite, and subordinate fine-grained sandstone of the Puntapunta Formation. This sequence occurs on the northeast flank of the Camp Dome complex, a regional scale doubly plunging anticline. Regional mapping undertaken by previous explorers indicates that the Chicken Ranch prospect may be related to a parasitic fold on the flank of the Camp Dome, or a separate fold structure altogether. High-grade gold with minor copper mineralisation as gossanous zones within and related to northwest trending, steeply dipping quartz veins hosted by deeply oxidized meta-sediments, including goethite pseudomorphs after massive pyrite alteration (some cubic ex-pyrite oxide pseudomorphs up to 2cm in size, similar in size to those collected in the early 1970's associated with the then outcropping Telfer gold mineralisation). The entire zone is deeply oxidized. Main zone consists of two or more northwest trending zones of mineralisation within a corridor up to 70m in width. The southwest lens of mineralisation is more persistent and has a strike length of approximately 1,100m. Several additional northwestern trending mineralisation zones to the east and west of the main zone. The Turkey Farm prospect occurs 800m west-northwest of the Chicken Ranch deposit, and gold with minor copper mineralisation within northwest trending, steeply dipping quartz ironstone veins and possible shallow (25° to 30°) east dipping zones hosted by deeply oxidized meta-sediments. The area is prospective for high-grade Telfer 'Reef Style' gold mineralisation and vein and/or stockwork style mineralisation.
		Pajero Tenement Area:
		 Hosts gold with copper mineralisation at Big Banana, Pajero, Wobbley's Gossan and 282 Reef prospects, etc. The Pajero exploration licence is centred on the Camp Anticline with the Telfer Member (upper Malu Formation) lithology (i.e. the preferred

Criteria	JORC Code explanation	Commentary
		 host rock of high-grade 'Reef Style' gold and copper mineralisation at the Telfer deposit) occupying approximately 40% of the licence area and the remainder being Malu Formation and Puntapunta Formation lithologies. The area is prospective for high-grade Telfer 'Reef Style' gold mineralisation and vein and/or stockwork style mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All drill hole results have been reported previously in open file WAMEX reports, and can be accessed using the DMIRS's online system. The specific reports related to the exploration information relevant to this public disclosure are referenced in Table 2, JORC Table 1, and associated Addendum, and Appendix 2.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported aggregated intervals have been length weighted. No density or bulk density is available and so no density weighting has been applied when calculating aggregated intervals. No top-cuts have been applied. A nominal 0.50 g/t gold or 1.0% copper lower cut-off grade is applied. Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals. Metal equivalence is not used in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Given the variety of drill hole types and distribution, the intersection angles for the various historic drilling generations are likely to be quite variable. The reported downhole intersections are estimated to commonly be in the range of 30% to 70% ± 10% of the true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of	All appropriate maps and sections (with scales) and tabulations of

Criteria	JORC Code explanation	Commentary
	intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	intercepts are reported or can sometimes be found in previous WA DMP WAMEX publicly available reports.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant results are reported or can sometimes be found in previous WA DMP WAMEX publicly available reports.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMP WAMEX publicly available reports. Zones of mineralisation and associated waste material have not been measured for their bulk density. Multi element assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulfur, lead, zinc and magnesium. No Geotechnical logging (e.g. Recovery, RQD and Fracture Frequency) was obtained from the WAMEX reports. No information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material was obtained from the WAMEX reports. No metallurgical test-work results are available.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 At this stage, the mineralisation identified by RAB, RC and limited diamond drilling at Chicken Ranch and Turkey Farm requires further work/drilling to test for continuity along strike and vertical extensions to mineralisation beyond the limits of existing historic drilling. At this stage, the mineralisation identified by RAB, RC and limited diamond drilling across the Pajero exploration licence (E45/4518) requires further work/drilling to test for continuity along strike and vertical extensions to mineralisation beyond the limits of existing historic drilling. All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMP WAMEX publicly available reports.

JORC Code, 2012 Edition – Table 1b Surface Sampling

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
		 Refer to the Addendum to JORC Table 1b for individual detailed descriptions of the JORC Criteria for the various Chicken Ranch area exploration licence application (E45/4867) and Pajero area granted exploration licence (E45/4518) exploration programmes completed between 1975 to 2001 (NB: No on-ground exploration post 2001) which are the subject of this public disclosure.
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Surface Geochemical exploration programmes over the Chicken Ranch and Pajero areas date back to 1975, and were conducted by the following companies: Newmont Pty Ltd (early 1970's to 1986); Carr Boyd Minerals Limited (1973 to 1975); Geopeko Limited (JV with Carr Boyd) (1975 to 1978); Marathon Petroleum Australia Limited (1979); Western Mining Corporation Limited (WMC) (1980); Duval Mining (Australia) Limited (Carr Boyd JV with Picon Exploration Pty Ltd) (1984 to 1986); Mount Burgess Gold Mining Company N.L. (1989 to 2001); Carpentaria (MIM JV with Mount Burgess) (1990 to 1996); Normandy (JV with Mount Burgess) (1998 to 2000); Newcrest Mining Limited (2009 to 2015); and Quantum Resources Limited (2012 to 2017). Historical Geochemical information for the project was compiled by Antipa into its proprietary digital exploration databases and

Criteria	JORC Code explanation	Commentary
		 GIS systems. Sample location and accuracy is expected to be ± 5 to 25m. Information on sample preparation and analysis was incompletely captured in historical reports. Refer to sampling table provided by Table 1b Addendum for information on specific data sources.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Data reported in this announcement relates to historical surface geochemical sampling results, and is therefore not applicable.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Data reported in this announcement relates to historical surface geochemical sampling results, and is therefore not applicable.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Data reported in this announcement relates to historical surface geochemical sampling results, and is therefore not applicable.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Data reported in this announcement relates to historical surface geochemical sampling results, and is therefore not applicable. Sample preparation and analysis techniques was not consistently provided in historical reports, and are unable to be verified. No QAQC information was provided in historical reports.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 No information is available in the historical reports on the nature of analysis completed. No geophysical tools were used. No information is available in the historical reports on laboratory QAQC procedures.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Data reported in this announcement relates to historical surface geochemical sampling results, and is therefore not applicable. Primary data was collated from Historical WAMEX reports by Antipa personnel and validated as part of a project-wide review. No adjustments or calibrations are made to any assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The nature of surveying systems used to locate the samples could not be determined from historic records. It is estimated that the sample location accuracy in on the order of ± 5 to 25m Chicken Ranch Local Grid 2-Point Transformation Data: Point # 1 =
		 Chicken Ranch Local Grid 10,000m east is 424,724.5m east in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 5,800m north is 7,611,897.1m north in GDA94 / MGA Zone 51;
		Point # 2 =
		 Chicken Ranch Local Grid 10,000m east is 422,694.5m east in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 8,600m north is 7,613,433.2m north in GDA94 / MGA Zone 51;
		 Chicken Ranch Local Grid North (360°) is equal to 303° in GDA94 / MGA Zone 51;

Criteria	JORC Code explanation	Commentary
		 Chicken Ranch Local Grid elevation is equal to GDA94 / MGA Zone 51.
		 The topographic surface has been defaulted to 257m RL.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Data reported in this announcement relates to historical surface geochemical sampling results, and is therefore not applicable.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Data reported in this announcement relates to historical surface geochemical sampling results, and is therefore not applicable.
Sample security	The measures taken to ensure sample security.	 The chain of custody of the samples taken was not detailed in historic reports.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No QAQC or sample audit information was found in the historic reports.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Refer to JORC Code Table 1a – Section 2.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Refer to JORC Code Table 1a – Section 2. Previous exploration activities have included geochemical lag and soil sampling, geological mapping, photo-lithological interpretations, rock chip and gossan sampling, RAC, AC, RC, and Diamond drilling, PIMA studies, and geophysical surveys (IP, Heliborne EM, aeromagnetic and partial gravity surveys).
Geology	Deposit type, geological setting and style of mineralisation.	 Refer to JORC Code Table 1a – Section 2.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Not applicable for the reporting of surface geochemical sampling results.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 No upper cuts or averaging was applied to surface geochemical results. Aggregation is not applicable. No metal equivalents have been reported.

Criteria	JORC Code explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Not applicable for the reporting of surface geochemical sampling results.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Please refer to the body of this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Not applicable for the reporting of surface geochemical sampling results.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMP WAMEX publicly available reports. Metallurgical test-work is not applicable for the reporting of surface geochemical sampling results.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Refer to JORC Code Table 1a – Section 2.

ADDENDUM TO JORC TABLE 1a – DRILL HOLE DATA: Chicken Ranch Area Exploration Licence Application (E45/4867) and Pajero Area Granted Exploration Licence (E45/4518):

Individual detailed descriptions of the JORC Criteria for the various Chicken Ranch area exploration licence application (E45/4867) and Pajero area granted exploration licence (E45/4518) exploration programmes completed between 1975 to 2001 (NB: No on-ground exploration post 2001) which are the subject of this public disclosure:

WA DMP Technical	7884
Report (WAMEX)	
Number	
Year	1975
Title	Report on the Protos 1 (Seventeen Mile Hill) Claim Block – Paterson Range
	Area, W.A.
Operator	Geopeko Limited

AC/Percussion drill holes P1NE1H1 to 8, P1NE2H1, P1SR2H1 to 4, P1SR4H1:

Drilling Details

Location	 Drill hole coordinates reported on drilling logs. Digital drill hole locations captured in later surrender reports.
Drilling Techniques	Drilling was undertaken by Wallis Geochemical Drilling Co. Pty Ltd using a Gemco H1 3T drilling rig.
	Reverse Cycle Air Core and Percussion drilling were both used.
Drilling Depth	Average depth 25m.
Downhole Survey	Drill holes inclined at -50 to -60°.
	Drill hole orientation captured on drill logs in report, digitally captured in
	later surrender report.

O " T ! '	
Sampling Techniques	 Samples averaging 10-12 kg were taken off the rig at every metre. Approximately 200 gm of each sample was retained for logging. Dust samples expelled from the cyclone exhaust were also analysed and showed a slightly lower concentration of metals than the original samples collected for both wet and dry samples of both air core and percussion holes.
Drill Sample Recovery	Not reported/documented.
Sub-sampling techniques and sample preparation	 Sample preparation was carried out by Pilbara Laboratories Pty Ltd in Wittenoom up until August 1977.
	 Sample preparation was undertaken on site for all samples taken after August 1977.
	 On-site sample preparation was undertaken using a Jacques 8' x 5' jaw crusher and the coarse-pulverised in a disc pulverisor to a nominal -50 mesh.
	 Samples were then riffle split into 250 gm packets.
	 Reference samples stored on site.
	 Samples were sent to Pilbara Laboratories Pty Ltd.
Digestion Method	HCL or perchloric acid for Cu, Pb, Zn, Ag and Fe.Aqua regia plus HCL.
Analysis Method	 All holes assayed for Au, Ag, As, Cu, Fe Pb, and Zn by AAS.
	 Au subjected to MIBK extraction prior to determination.
	Detection limits as follows:
	 Pilbara Laboratories Pty Ltd: As, Cu, Pb, Zn to 1 ppm; Ag and Au to 0.1 ppm.
	 Analabs Pty Ltd: Cu, Pb, Zn, and Fe to 5 ppm; Ag to 0.5 ppm; As to 1 ppm; Au to 0.2 ppm.
Reported Units	All elements reported as ppm.
Quality of assay data and laboratory tests	 An orientation hole was drilled using both Aircore and percussion drilling, and assays showed that gold values were spread over a larger interval in percussion holes, but air core holes reported higher grades. However, the position of mineralised zones was equivalent in both AC and Percussion holes.

	 One in every ten samples was duplicated and sent to Analabs Pty Ltd, in Perth. Where results for equivalent samples were significantly different from each other, samples were re-assayed. Based on comparison of duplicate samples, both labs were determined to deliver high-precision analysis.
Verification of sampling and assaying	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report.
Location of data	 Only one depth for each sample was reported; it was assumed that this depth was the maximum depth (or 'Depth TO') for the sample. The sample 'Depth FROM' value was not reported.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	Not reported/documented.

Logging	Log sheets provided in report.
---------	--------------------------------

Data Validation

Drill hole location	 Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent annual or surrender reports, values were compared. Routine validation completed on data entered values against original report.
	 Data entered assay values were randomly validated against source data at two samples per page (i.e. approximately 80 samples on each page).

WA DMP Technical Report (WAMEX) Number	15374
Year	1984
Title	Carr Boyd J.V. Project; First Progress Report from January 1, 1984 to December 31, 1984
Operator	Duval Mining (Australia) Inc.
Tenement IDs (overlapping current tenure only)	E45/335, Granted 31 October 1984, 140.7 km ² , "Seventeen Mile Hill"

RAB drill holes SMH52 to 70:

Location	 Drilling was conducted along traverses oriented in a local grid. Grid was established using chain-and compass. Grids were on 40m peg spacings with line spacing and orientation dependent on local geology.
Drilling Techniques	 Drilling was undertaken by Rotadrill West Pty Ltd using a truck-mounted Gemco multi-purpose drilling rig.
Drilling Depth	Average depth of RAB holes 25m.
Downhole Survey	 Most holes drilled at a 60° dip. Drill hole orientation captured on drill logs in report, digitally captured in later surrender report.

Sampling Techniques	 All holes were sampled at one metre intervals. Split samples of approximately 1 kg were then composited. Where a gold result of greater than 0.5 ppm was reported, individual one metre sampled were analysed. Drilling program was designed to test for mineralisation above the water table because of sampling problems involved with wet samples.
Drill Sample Recovery	Not reported/documented.
Sub-sampling techniques and sample preparation	 Sample preparation was undertaken on site using a disc pulveriser. All samples were reduced to a 120 packet of -80 mesh material. Reference samples stored on site.
Dispetion Mathed	Samples were sent to Minlabs in Perth.
Digestion Method	Not reported/documented – captured as 'unknown'.
Analysis Method	All holes assayed for Au, Ag, As, Cu, Pb, Mn, and Zn.
Reported Units	All elements reported as ppm.
Quality of assay data and laboratory tests	No reference to QAQC.
Verification of sampling and assaying	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report.
Location of data	 Sample depths reported as 'From-To'. 2m composites were assumed based on 'From-To' unless otherwise stated.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	Not reported/documented.

Geological Logging

Logging	Log sheets provided in report.
---------	--------------------------------

Drill hole location	 Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent annual or surrender reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page, or greater for intervals containing high gold values.

WA DMP Technical	17053
Report (WAMEX)	
Number	
Year	1985
Title	Carr Boyd J.V. Project; Second Progress Report from January 1, 1985 to
	December 31, 1985
Operator	Duval Mining (Australia) Inc.
Tenement IDs	E45/335, Granted 31 October 1984, 140.7 km ² , "Seventeen Mile Hill"
(overlapping current	
tenure only)	

RAB and RC drill holes CSMH72 (RC) and CSMH73 to 101 (RAB):

Drilling Details

Location	 Drilling was conducted along traverses oriented in a local grid. Grid was established using chain-and compass or theodolite. Grids were on 40m peg spacings with line spacing and orientation dependent on local geology.
Drilling Techniques	 Drilling was undertaken by Stanley Drilling. RAB drilling was the dominant method, although some RC was also used.
Drilling Depth	Average depth of RAB holes 25m.
Downhole Survey	 Most holes drilled at a 60° dip toward grid west. Drill hole orientation captured on drill logs in report, digitally captured in later surrender report.

O Un T I i	
Sampling Techniques	All holes were sampled at one metre intervals.
	 Split samples of approximately 1 kg were then composited.
	 Where a gold result of greater than 0.5 ppm was reported, individual one
	metre sampled were analysed.
	 Drilling program was designed to test for mineralisation above the water
	table because of sampling problems involved with wet samples.
Drill Sample Recovery	Not reported/documented.
Sub-sampling techniques	 Sample preparation was undertaken on site using a disc pulveriser.
and sample preparation	 All samples were reduced to a 120 packet of -80 mesh material.
	 Reference samples stored on site.
	 Samples were sent to Minlabs in Perth.
Digestion Method	 Not reported/documented – captured as 'unknown'.
Analysis Method	 All holes assayed for Au, As, Cu, Pb, Mn, and Zn.
Reported Units	All elements reported as ppm.
Quality of assay data and	No reference to QAQC.
laboratory tests	
Verification of sampling	 Where data is reported in subsequent Annual or Surrender Reports,
and assaying	values were compared.
	 Routine validation completed on data entered values against original
	report.
Location of data	 Only one depth for each sample was reported; it was assumed that this
	depth was the maximum depth (or 'Depth TO') for the sample.
	 The sample 'Depth FROM' value was not reported.
	 Based on the documented data a 4m composite sample was assumed
	unless a subsequent sample 'Depth TO' was less than 4m greater than
	the previous sample 'Depth TO' depth. In this case, the previous 'Depth
	TO' value was used as the 'Depth FROM' value.
	 For composites containing anomalous gold values, individual metres
	were sampled and re-assayed – These intervals are noted in drill logs as
	"upper metre Au and lower metre Au".
Data spacing and	• N/A
distribution	
Orientation of data in	• N/A
relation to geological	
structure	
Sample security	Not reported/documented.

Logging	Log sheets provided in report.
Data Validation	
Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent annual or surrender reports, values were compared. Routine validation completed on data entered values against original report.
	 Data entered assay values were randomly validated against source data at two samples per page, or more if anomalous gold values were reported.

WA DMP Technical Report (WAMEX) Number	19291
Year	1986
Title	Carr Boyd J.V. Project; Third Progress Report from January 1, 1986 to
	December 31, 1986
Operator	Battle Mountain (Australia) Inc.
Tenement IDs	E45/358, Granted 29 May 1984, 63 km ² , "Seventeen Mile Hill"
(overlapping current	
tenure only)	

RAB/Percussion drill holes: CSMH214 to 223, 240 to 256, and 345

Drilling Details

Location	Drilling was conducted along traverses oriented in a local grid.
	 Grid was established using chain-and compass or theodolite.
	Grids were on 40m peg spacings with line spacing and orientation
	dependent on local geology.
Drilling Techniques	Drilling was undertaken by Roladril using an Edson 3000 rig
	 Combination of RAB/Percussion.
Drilling Depth	EOH depth captured on logs.
Downhole Survey	Most holes drilled at a 60° dip.
	Drill hole orientation captured on drill logs in report, digitally captured in
	later surrender report.

Sampling Techniques	 All holes were sampled at one metre intervals using a PVC tube. Representative samples of approximately 1 kg were then composited to
	two metres.
	 Where a gold result of greater than 0.5 ppm was reported, individual one metre sampled were analysed.
Drill Sample Recovery	 Not reported/documented.
Sub-sampling techniques and sample preparation	 Sample preparation was undertaken on site using a disc pulveriser. All samples were reduced to a 120 packet of -80 mesh material.
	Reference samples stored on site. Someles were sent to Ministry in Porth
Discretion Mathead	Samples were sent to Minlabs in Perth.
Digestion Method	Not reported/documented – captured as 'unknown'.
Analysis Method	 All holes assayed for Au, As, Cu, Pb, and Zn.
	 Some holes assayed for Ag and Cr.
Reported Units	All elements reported as ppm.
Quality of assay data and laboratory tests	No reference to QAQC.
Verification of sampling and assaying	 Where data is reported in subsequent Annual or Surrender Reports, values were compared.
	 Routine validation completed on data entered values against original report.
Location of data	 Only one depth for each sample was reported; it was assumed that this depth was the maximum depth (or 'Depth TO') for the sample.
	 The sample 'Depth FROM' value was not reported.
	 Based on the documented data a 2m composite sample was assumed unless a subsequent sample 'Depth TO' was less than 2m greater than

	the previous sample 'Depth TO' depth. In this case, the previous 'Depth TO' value was used as the 'Depth FROM' value. • When individual 1m intervals were re-assayed for gold, the results were reported as "Upper Metre and Lower Metre" on log sheets.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	Not reported/documented.

Logging	Log sheets provided in report.
---------	--------------------------------

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent annual or surrender reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page.

WA DMP Technical Report (WAMEX) Number	32832
Year	1990
Title	Annual progress report on exploration carried out during 1990 on EL's 45/857, 45/859, 45/909, Mount Burgess JV, Paterson Province
Operator	Carpentaria Exploration Company Pty. Ltd.
Tenement IDs (overlapping current tenure only)	E45/857 Granted 11/10/1988, 72.275 km², "East Camp Dome"

RAB drill holes ECD2-1 to 2, 5 to 6, 9 to 12

Drilling Details

Location	 Two drill traverses were completed (ECD-1 and ECD-2) of which only parts of line 2 occur within the current tenure. Holes were drilled along tape-and-compass surveyed lines and spaced at 200-400m intervals.
Drilling Techniques	 Drilling was undertaken by Luhrs Holdings Pty Ltd using an Edson 3000 rig. All holes were drilled vertically. Most holes penetrated the basement rocks.
Drilling Depth	EOH depth ranges from 19m to 43m.
Downhole Survey	 All holes listed as vertical. Om survey entered a -90° dip and 0° magnetic north entered for all holes.

Sampling Techniques	 Samples were taken off the rig at 1m intervals and geologically logged. Samples were taken for assay arbitrarily over intervals of up to 5m. All holes were sampled at EOH regardless of geology. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth.
Drill Sample Recovery	 Not reported/documented.
Sub-sampling techniques and sample preparation	Samples pulverised to -200 mesh.
Digestion Method	 Not reported/documented – captured as 'unknown'.
Analysis Method	 Assayed for Au, Ag, As, Cu, Pb, and Zn by AAS.
Reported Units	All elements reported as ppm.

Quality of assay data and laboratory tests	No reference to QAQC.
Verification of sampling and assaying	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report.
Location of data	Sample locations ('From-To') were captured graphically on log sheets
	 Most were 4m composites unless otherwise noted.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	Not reported/documented.

Logging	Graphical log sheets provided in report.
---------	--

Data Validation

Drill hole location	 Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent annual or surrender reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page.

WA DMP Technical Report (WAMEX)	34762
Number	
Year	1991
Title	Annual progress report on exploration carried out during 1991 on EL's 45/857, 45/859, 45/909, Mount Burgess JV, Paterson Province
Operator	M.I.M. Exploration Pty. Ltd. (MIMEX, wholly owned subsidiary of Mount Isa Mines Ltd.)
Tenement IDs	E45/857 Granted 11/10/1988, 72.275 km ² , "East Camp Dome"
(overlapping current tenure only)	Surrendered half as per statutory requirements

RAB Drill holes (i.e. 62) CR1 to 62:

Drilling Details

Location	 Holes were drilled along tape-and-compass surveyed grid lines contiguous with local lag sampling grids.
Drilling Techniques	 Drilling was undertaken by TDC Drilling Pty Ltd using a multi-purpose RAB/Aircore Gemco H-13 rig mounted on a 6X6WD all terrain carrier. 60° angled holes were drilled to test for Au anomalism, and vertical shallow holes were drilled to test for base metal anomalism to bedrock on a 50x100m grid.
Drilling Depth	 62 holes were drilled for a total of 2,618m. Most holes penetrated to bedrock at less than 30m depth.
Downhole Survey	 45 holes drilled at 60° to grid west. The remaining holes were drilled vertically.

Sampling Techniques	 Samples were taken off the rig at 1m intervals and geologically logged. Samples were taken for assay arbitrarily over intervals of up to 4m. Anomalous intervals were re-sampled at 1m. All holes were sampled at EOH regardless of geology. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth.
Drill Sample Recovery	 Not reported/documented.

Sub-sampling techniques and sample preparation	Samples pulverised to -200 mesh.
Digestion Method	Not reported/documented – captured as 'unknown'.
Analysis Method	Assayed for Au, Ag, As, Cu, Pb, and Zn by AAS.
Reported Units	All elements reported as ppm.
Quality of assay data and laboratory tests	No reference to QAQC.
Verification of sampling and assaying	 Where data is reported in subsequent annual or surrender reports, values were compared. Routine validation completed on data entered values against original report.
Location of data	 Sample locations ('From-To') were captured graphically on log sheets 4m composites were assumed unless otherwise noted. Assay results were reported on cross-sections, intervals were visually compared, as sample/assay ledgers from the laboratory were not supplied.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	Not reported/documented.

Logging	•	Samples were geologically logged at 1m intervals onto graphical logging sheets, included with the WAMEX report.
---------	---	---

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent annual or surrender reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page (i.e. approximately 80 samples on each page).

WA DMP Technical Report (WAMEX) Number	38092
	4000
Year	1992
Title	Annual progress report on exploration carried out during 1992 on
	Exploration Licenses 45/857 and 45/859, and including areas applied for
	conversion to mining leases (M45/527, 528, MLA 548, 549, 550, 551), Mount
	Burgess JV, Paterson Province
Operator	M.I.M. Exploration Pty. Ltd. (MIMEX, wholly owned subsidiary of Mount Isa
	Mines Ltd.)
Tenement IDs	E45/857 Granted 11/10/1988, 20.27 km ² , "East Camp Dome"
(overlapping current	MLA 45/548, 900ha (pending)
tenure only)	MLA 45/549, 900ha (pending)

RC Drill holes (3) CCRC1 to 3:

Location	 A portion of the previous hip chain and compass LAG grid was regridded at 100m line spacing using tape measure and compass. Additional gridding was completed as infill to previous LAG grids. All holes were drilled along local grid lines. Collar coordinates reported in WAMEX report in local grid.
Drilling Techniques	 Stanley Drilling Co. of Perth carried out RC drilling during the season with H22 Gemco RC/Diamond rig mounted on an 8-wheel dual axle carrier.
Drilling Depth	 3 holes drilled for a total of 263m. End of Hole depth between 81m and 94m.

Downhole Survey • All holes were drilled at -60° toward grid west.	
---	--

Sampling Techniques	 Samples were taken off the rig at 1m intervals and geologically logged. Samples were taken for assay arbitrarily over intervals of up to 4m. Anomalous intervals were re-sampled at 1m. All holes were sampled at EOH regardless of geology. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth.
Drill Sample Recovery	Deep weathering resulted in moderate core loss in this area.
Sub-sampling techniques and sample preparation	Samples were pulverised to -200 mesh.
Digestion Method	 Not reported/documented – captured as 'unknown'.
Analysis Method	 Samples were assayed for Au, Ag, As, Cu, Pb, Zn, and Co by AAS. 1m resamples of all anomalous intervals were assayed for Au by AAS only.
Reported Units	 All elements reported as ppm. Au shown as ppb on cross sections in report.
Quality of assay data and laboratory tests	No reference to QAQC.
Verification of sampling and assaying	 Routine validation completed on data entered values against original report.
Location of data	 Sample intervals captured from drill hole logging sheet as well as on sample ledgers.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	 Not reported/documented.

Geological Logging

Logging	Geological Logging reported.
999	Occiogical Logging reported.

Data Validation

Drill hole location	 Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page (i.e. approximately 80 samples on each page).

RAB Drill holes (116 holes for 6174m) CR63 to 178:

Drilling Details

Location	 A portion of the previous hip chain and compass LAG grid was regridded at 100m line spacing using tape measure and compass. Additional gridding was completed as infill to previous LAG grids. All holes were drilled along local grid lines. Collar coordinates reported in WAMEX report in local grid. Drilling was completed at 25m spacing on lines 50m apart.
Drilling Techniques	 Kennedy Drilling Pty Ltd of Kalgoorlie carried out RAB drilling during the season with custom RAB rig mounted on an 4x4 wheel all terrain carrier.
Drilling Depth	End of Hole depth between 32m and 121m.
Downhole Survey	All holes were drilled at -60° toward grid west.

Sampling Techniques	•	Samples were taken off the rig at 1m intervals and geologically logged.
	•	Samples were taken for assay arbitrarily over intervals of up to 4m.

	 Anomalous intervals were re-sampled at 1m. All holes were sampled at EOH regardless of geology. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth.
Drill Sample Recovery	 Deep weathering resulted in moderate core loss in this area. No fresh rock was intersected – base of oxidation was not identified.
Sub-sampling techniques and sample preparation	Samples were pulverised to -200 mesh.
Digestion Method	 Not reported/documented – captured as 'unknown'.
Analysis Method	 Samples were assayed for Au, Ag, As, Cu, Pb, Zn, and Co by AAS. 1m resamples of all anomalous intervals were assayed for Au by AAS only.
Reported Units	All units reported as ppm.
Quality of assay data and laboratory tests	No reference to QAQC.
Verification of sampling and assaying	 Routine validation completed on data entered values against original report.
Location of data	 Sample intervals captured from drill hole logging sheet and sample ledgers.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	Not reported/documented.

Logging	Geological Logging reported.
---------	------------------------------

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page (i.e. approximately 80 samples on each page).

Diamond Drill hole (2) CR92-1 and 2:

Drilling Details

Location	 A portion of the previous hip chain and compass LAG grid was regridded at 100m line spacing using tape measure and compass. Additional gridding was completed as infill to previous LAG grids. All holes were drilled along local grid lines. Collar coordinates reported in WAMEX report in local grid.
Drilling Techniques	 Longyear Australia Pty Ltd of Perth carried out Diamond drilling during the season with a Longyear LMP-850 truck mounted rig. Triple Tube NQ and HQ drill rods were used following standard RC precollars.
Drilling Depth	 Precollars for CR92-1 and CR92-2 were drilled to 150m and 126m respectively. End of Hole depth for CR92-1 and CR92-2 was 273.5m and 322.5m respectively.
Downhole Survey	All holes were drilled at -60° toward grid west.

Sampling Techniques	•	Diamond core was logged on site then transported to MIMEX Sunday Creek Camp for cutting and storage.
	•	Samples were taken for assay arbitrarily over intervals of up to 3m. Anomalous intervals were re-sampled at 1m.
	•	Anomalous intervals were re-sampled at 1m.

	 All holes were sampled at EOH regardless of geology. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth.
Drill Sample Recovery	Deep weathering resulted in moderate core loss in this area.
Sub-sampling techniques and sample preparation	Samples were pulverised to -200 mesh.
Digestion Method	Not reported/documented – captured as 'unknown'.
Analysis Method	 Samples were assayed for Au, Ag, As, Cu, Pb, Zn, and Co by AAS 1m resamples of all anomalous intervals were assayed for Au by AAS only.
Reported Units	All units reported as ppm.
Quality of assay data and laboratory tests	No reference to QAQC.
Verification of sampling and assaying	 Routine validation completed on data entered values against original report.
Location of data	Sample intervals captured from drill hole logging sheet.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	Samples stored at MIMEX Sunday Creek Camp.

Logging	Geological Logging reported.
---------	------------------------------

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page (i.e. approximately 80 samples on each page).

WA DMP Technical Report (WAMEX) Number	40539
Year	1994
Title	Annual progress report on exploration carried out during 1993 on Exploration Licenses 45/857 and 45/859, and Mining Leases 45/527, 528, 548, 549, 550, 551, Mount Burgess JV, Paterson Province
Operator	M.I.M. Exploration Pty. Ltd. (MIMEX, wholly owned subsidiary of Mount Isa Mines Ltd.)
Tenement IDs	E45/857 Granted 11/10/1988, 20.27 km ² , "East Camp Dome"
(overlapping current	MLA 45/548, 900ha Granted March 31 1993, 900 Ha
tenure only)	MLA 45/549, 900ha Granted March 31 1993, 900 Ha

RAB Drill holes (158 holes for 8181m) CR179 to 333:

Location	 50 line-km of gridding following the existing hip chain and compass reestablished. All holes were drilled along local grid lines. Collar coordinates reported in WAMEX report in local grid. Drilling was completed at 25m spacing on lines 50m apart. Digital data for these drill holes is reported in WAMEX report number 65269 (Final Surrender).
Drilling Techniques	 Kennedy Drilling Pty Ltd of Kalgoorlie carried out RAB drilling during the season with custom RAB rig mounted on an 4x4 wheel all terrain carrier.
Drilling Depth	End of Hole depth reported.
Downhole Survey	All holes were drilled at -60° toward grid west except for holes drilled on section 6000, which were drilled to grid east.

Sampling Techniques	 Samples were taken off the rig at 1m intervals and geologically logged. Samples were taken for assay arbitrarily over intervals of up to 3m. Anomalous intervals were re-sampled at 1m. All holes were sampled at EOH regardless of geology. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth.
Drill Sample Recovery	 Deep weathering resulted in moderate core loss in this area.
	 No fresh rock was intersected – base of oxidation was not identified.
Sub-sampling techniques	 Samples were pulverised to -200 mesh.
and sample preparation	
Digestion Method	 Not reported/documented – captured as 'unknown'.
Analysis Method	 Samples were assayed for Au, As, Cu, Pb, Zn, and Co by AAS to 0.01 ppm detection. 1m resamples of all anomalous intervals were assayed for Au by AAS
	only.
Reported Units	All units reported as ppm.
Quality of assay data and laboratory tests	No reference to QAQC.
Verification of sampling and assaying	 Routine validation completed on data entered values against original report.
Location of data	 Sample intervals captured from drill hole logging sheet, and reported on sample ledgers.
Data spacing and	• N/A
distribution	
Orientation of data in	• N/A
relation to geological	
structure	
Sample security	 Not reported/documented.

Geological Logging

Logging • Geological Logging reported.
--

Data Validation

Drill hole location	 Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at approximately two holes per page, unless high gold values were reported; then more samples were validated.

Diamond Drill hole (2) CRD93-1 and 2:

Location	•	All holes were drilled along local grid lines. Collar coordinates reported in WAMEX report in local grid. Digital data for these drill holes is reported in WAMEX report number 65269 (Final Surrender).
Drilling Techniques	•	TDC Drilling Pty Ltd of Perth carried out Diamond drilling during the season with an Edson model MP6000 heavy duty top-drive multipurpose drilling rig mounted on an Atkinson 6x6WD.
Drilling Depth	•	Both diamond holes had a 120m RC precollar. CRD93-1 was drilled to a total depth of 249.30m. CRD93-2 was drilled to a total depth of 205.2m.
Downhole Survey	•	All holes were drilled at -60° toward 35° magnetic (grid west).

 Diamond core was logged at Paterson Camp, then transported to MIMEX Sunday Creek Camp for cutting and storage. Samples were taken for assay arbitrarily over intervals of up to 3m. Anomalous intervals were re-sampled at 1m. All holes were sampled at EOH regardless of geology. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth.
 Deep weathering resulted in moderate core loss in this area. Difficult drilling conditions resulted in loss of equipment.
Samples were pulverised to -200 mesh.
 Not reported/documented – captured as 'unknown'.
 Samples were assayed for Au, As, Cu, Pb, Zn, and Co by AAS.
 1m resamples of all anomalous intervals were assayed for Au by AAS only.
All units reported as ppm.
No reference to QAQC.
 Routine validation completed on data entered values against original report.
 Sample intervals captured from drill hole logging sheet and sample ledgers.
• N/A
• N/A
Samples stored at MIMEX Sunday Creek Camp.

Geological Logging

Logging	Geological Logging reported.
---------	------------------------------

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at no fewer than two samples per page.

WA DMP Technical	44642
Report (WAMEX)	
Number	
Year	1995
Title	Annual progress report on exploration carried out during 1994 on
	Exploration Licenses 45/857 and 45/859, and Mining Leases 45/527, 528,
	548, 549, 550, 551, Mount Burgess JV, Paterson Province
Operator	M.I.M. Exploration Pty. Ltd. (MIMEX, wholly owned subsidiary of Mount Isa
	Mines Ltd.)
Tenement IDs	E45/857 Granted 11/10/1988, 20.27 km ² , "East Camp Dome"
(overlapping current	MLA 45/548, 900ha Granted March 31, 1993, 900 Ha
tenure only)	MLA 45/549, 900ha Granted March 31, 1993, 900 Ha

RAB Drill holes CR334 to 386:

Location	•	All holes were drilled along local tape and compass surveyed grid lines.
	•	Collar coordinates reported in WAMEX report in local grid.
	•	Drilling was completed at 25m spacing on lines 50m apart.

	•	Digital data for these drill holes is reported in WAMEX report number 65269 (Final Surrender).
Drilling Techniques	•	Kennedy Drilling Pty Ltd of Kalgoorlie carried out RAB drilling during the season with custom RAB rig mounted on an 4x4 wheel all terrain carrier.
Drilling Depth	•	End of Hole depth averaged 45 to 50m.
Downhole Survey	•	Holes were either drilled at -60° or vertical.

Sampling Techniques	 Samples were taken off the rig at 1m intervals and geologically logged. Samples were taken for assay arbitrarily over intervals of up to 4m. Anomalous intervals were re-sampled at 1m. All holes were sampled at EOH regardless of geology. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth.
Drill Sample Recovery	 Deep weathering resulted in moderate core loss in this area. No fresh rock was intersected – base of oxidation was not identified.
Sub-sampling techniques and sample preparation	Samples were pulverised to -200 mesh.
Digestion Method	 Not reported/documented – captured as 'unknown'.
Analysis Method	 Samples were assayed for Au, As, Cu, Pb, Zn, and Co by AAS to 0.01 ppm detection. 1m resamples of all anomalous intervals were assayed for Au by AAS only.
Reported Units	All units reported as ppm.
Quality of assay data and laboratory tests	No reference to QAQC.
Verification of sampling and assaying	 Routine validation completed on data entered values against original report.
Location of data	 Sample intervals captured from sample ledgers.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	 Not reported/documented.

Geological Logging

Logging	Geological Logging reported.	
---------	------------------------------	--

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page or more in the case of high gold values.

WA DMP Technical	47879
Report (WAMEX)	
Number	
Year	1996
Title	Annual progress report on exploration carried out during 1995 on
	Exploration Licenses 45/857 and 45/859, and mining leases M45/527, 528,
	548, 549, 550, 551), Mount Burgess JV, Paterson Province
Operator	M.I.M. Exploration Pty. Ltd. (MIMEX, wholly owned subsidiary of Mount Isa
	Mines Ltd.)
Tenement IDs	E45/857 Granted 11/10/1988, 12.82 km ² , "East Camp Dome" – relinquished
(overlapping current	portion pegged for MLA 45/663 and 664
tenure only)	M 45/548, 900ha Granted April 1995
	M 45/549, 900ha Granted April 1995

AC Drill holes CRAC01 to 07, and 14 to 15:

Drilling Details

Location	•	Previously established local gridlines were surveyed using hip chain and compass or tape measure and compass at a spacing of 100m. All holes were drilled along local grid lines. Collar coordinates reported in WAMEX report in local grid.
Drilling Techniques	•	Wallis Drilling Pty Ltd carried out AC drilling using a Wallis 500 top drive air core rig mounted on a MAN 6x6 carrier.
Drilling Depth	•	End of Hole depth as reported.
Downhole Survey	•	Most holes were drilled at -60° toward grid west unless otherwise noted.

Sampling, Drilling and Analytical Techniques and Data

Sampling Techniques	 Samples were taken off the rig at 1m intervals and geologically logged. 2m composite samples were collected for the entire hole. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth.
Drill Sample Recovery	Not reported.
Sub-sampling techniques and sample preparation	Samples were pulverised to -200 mesh.
Digestion Method	 Not reported/documented – captured as 'unknown'.
Analysis Method	 Samples were assayed for Au (0.01 ppm detection), Ag (0.1 ppm detection), As (5 ppm detection), Cu, Pb, Zn, Mn, Co (0.1 ppm detection limit), and Fe (0.01% detection) by AAS.
Reported Units	 All units reported as ppm except for Fe, which is reported as %.
Quality of assay data and laboratory tests	Not reported.
Verification of sampling and assaying	 Routine validation completed on data entered values against original report.
Location of data	Sample intervals captured from sample ledgers.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	Not reported/documented.

Geological Logging

Logging	Geological Logging reported.
---------	------------------------------

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at least two samples per page.

WA DMP Technical	50693
Report (WAMEX)	
Number	
Year	1997
Title	Annual technical report for the year ending December 1996; Mount Burgess
	Joint Venture (Telfer) EL 45/857, 859, ML 45/527, 528, 548, 549, 550, 551
Operator	Mount Burgess Gold Mining Company N.L.
Tenement IDs	E45/857 Granted 11/10/1988, 12.82 km ² , "East Camp Dome" – relinquished
(overlapping current	portion pegged for MLA 45/663 and 664
tenure only)	M 45/548, 900ha Granted April 1995
	M 45/549, 900ha Granted April 1995

RAB Drill holes CRB387 to 402 and TFB001 to 025:

Drilling Details

Location Drilling Techniques	 Local Grid Transform coordinates are described in this report. Previously established local gridlines were surveyed using hip chain and compass or tape measure and compass at a spacing of 100m. All holes were drilled along local grid lines spaced 50m apart as infill to previous drilling. Collar coordinates reported in WAMEX report in local grid. Wallis Drilling Pty Ltd carried out AC drilling using a Wallis 500 top drive
	air pore rig mounted on a MAN 6x6 carrier.
Drilling Depth	End of Hole depth as reported.
Downhole Survey	All holes were drilled at -60° toward grid east.

Sampling, Drilling and Analytical Techniques and Data

Sampling Techniques Drill Sample Recovery	 Samples were taken off the rig at 1m intervals and geologically logged. 4m composite samples were assayed for the entire hole. Anomalous intervals were re-sampled at 1m. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth.
Sub-sampling techniques and sample preparation	Not reported.Not reported.
Digestion Method	Not reported.
Analysis Method	 Samples were assayed for Au (0.01 ppm detection), Ag (0.1 ppm detection), As (5 ppm detection), Cu, Pb, Zn, Mn (1 ppm detection), and Fe (0.01% detection) by AAS. 1m resamples of all anomalous intervals were assayed for Au by AAS only.
Reported Units	All units reported as ppm except for Fe, which is reported as %.
Quality of assay data and laboratory tests	Standards submitted approximately every 50 samples.
Verification of sampling and assaying	 Routine validation completed on data entered values against original report.
Location of data	 Sample intervals captured from sample ledger.
Data spacing and distribution	• N/A
Orientation of data in relation to geological structure	• N/A
Sample security	 Not reported/documented.

Geological Logging

Logging • Geological Logging reported.	
--	--

Drill hole location	•	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.					
Assays	•	Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report.					

•	Data entered assay values were randomly validated against source data
	at approximately two samples per page

WA DMP Technical Report (WAMEX) Number	57455
Year	1998
Title	Annual report on exploration for the period 1 January 1998 to 31 December 1998; 17 Mile Hill Dome Group; Crofton Joint Venture
Operator	Normandy Exploration Ltd
Tenement IDs (overlapping current tenure only)	M45/448 Granted 5 October 1989, 987 Ha M45/271 Granted 19 May 1988, 338 Ha

<u>AC Drill holes YAC789, 939 to 942, 954 to 966, 977 to 981, 995 to 997, 1281 to 1283, 1594 to 1597, and 1801:</u>

Drilling Details

Location	 Regional Drilling was based on a nominal 400m by 200m pattern. Collar positions were located using a GPS. Collar locations are reported in AMG coordinates. Digital drill hole data is provided with the report.
Drilling Techniques	 Drilling was completed by Orbit Drilling Pty Ltd using a 6WD Landcruiser mounted Edson 150 Aircore rig. BQ and NQ rods were used, BQ with blade bit only and NQ with blade and hammer bits. For NQ an auxiliary air compressor was used.
Drilling Depth	 End of Hole depth as reported. Depth of cover is up to 30m. Drill holes were completed through transported overburden into the top of bedrock.
Downhole Survey	All holes were vertical.

Sampling Techniques	 The material immediately above the bedrock interface (i.e. palaeosoil) and bedrock chips were collected where possible. Samples were collected in 150mm diameter PVC buckets beneath the cyclone. EOH chips were always collected. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth. 								
Drill Sample Recovery	•	Not reported.							
Sub-sampling techniques	•	Not reported.							
and sample preparation Digestion Method	•	Agua	regia.						
Analysis Method	-	riqua	Element	Method	Detection Limit	Units			
			Au	B*ETA	0.1	ppb			
			Fe	B/OES	0.01	%			
			Mn	B/OES	1	ppm			
	Ca B/OES 0.01 %								
	Cu B/OES 1 ppm								
			Pb	B/OES	2	ppm			
			Zn	B/OES	1	ppm			
			Bi	B/MS	0.01	ppm			
			Мо	B/MS	1	ppm			
			As	B/MS	0.1	ppm			
			In	B/MS	0.01	ppm			

		Sn	B/MS	0.05	ppm	
		W	B/MS	0.05	ppm	
	ET/ extOE EmMS	A is a carbo ra sensitivity S refers to ission Spec	y. determination t strometry.	digest. S gold determination by Inductively Couple uctively Coupled Plas	d Plasma	a-Optical
Reported Units		e above tab	le.			
Quality of assay data and laboratory tests	• No	t reported.				
Verification of sampling and assaying	Roll rep		tion completed	on data entered valu	ies again	st original
Location of data	• Dril	Ihole data ii	ncluding sampl	e and assay informa	tion prov	ided digitally.
Data spacing and distribution	• N/A	\		•		·
Orientation of data in relation to geological structure	• N/A	\				
Sample security	Not	reported/d	ocumented.			

Logging	Geological Logging reported.
---------	------------------------------

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page.

WA DMP Technical Report (WAMEX) Number	57776
Year	1998
Title	Annual report on exploration for the period 1 January 1998 to 31 December 1998; Combined annual report Isdell Joint Venture
Operator	Normandy Exploration Ltd
Tenement IDs (overlapping current tenure only)	E45/1654 granted 22 March 1996, 7 blocks "Camp Dome South"

AC Drill holes YAC1605, 1646 to 1650, and 1658 to 1671:

Location	 Regional Drilling was based on a nominal 400m by 200m pattern. Collar positions were located using a GPS. Collar locations are reported in AMG coordinates. Digital drill hole data is provided with the report.
Drilling Techniques	 Drilling was completed by Orbit Drilling Pty Ltd using a 6WD Landcruiser mounted Edson 150 Aircore rig. BQ and NQ rods were used, BQ with blade bit only and NQ with blade and hammer bits. For NQ an auxiliary air compressor was used.
Drilling Depth	End of Hole depth as reported.
Downhole Survey	All holes were vertical.

Sampling Techniques Drill Sample Recovery	 The material immediately above the bedrock interface (i.e. palaeosoil) and bedrock chips were collected where possible. Samples were collected in 150mm diameter PVC buckets beneath the cyclone. EOH chips were always collected. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth. Not reported. 						
Sub-sampling techniques and sample preparation	•	Not reported.					
Digestion Method	•	Aqua r	regia.				
Analysis Method			Element	Method	Detection Limit	Units	
			Au	B*ETA	0.1	ppb	
			Fe	B/OES	0.01	%	
			Mn	B/OES	1	ppm	
			Ca	B/OES	0.01	%	
			Cu	B/OES	1	ppm	
			Pb	B/OES	2	ppm	
			ZN	B/OES	1	ppm	
			Bi	B/MS	0.01	ppm	
			Мо	B/MS	1	ppm	
			As	B/MS	0.1	ppm	
			In	B/MS	0.01	ppm	
			Sn	B/MS	0.05	ppm	
			W	B/MS	0.05	ppm	
	•	 ETA is a carbon rod finish AAS gold determination modified to provide extra sensitivity. OES refers to determination by Inductively Coupled Plasma-Optical Emission Spectrometry. 					
Reported Units	•	See al	bove table.				
Quality of assay data and laboratory tests	•	N					
Verification of sampling	•			completed	on data entered val	ues again	st original
and assaying		report.		and access -	loto wore remarks -1 -1	مناحاك	
Location of data Data spacing and	•	N/A	e intervais	and assay d	lata were reported di	gitaliy.	
distribution							
Orientation of data in relation to geological structure	•	N/A					
Sample security	•	Not re	ported/docu	ımented.			

Geological Logging

Logging	 Geological Logging reported. 	
---------	--	--

Drill hole location	•	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	•	Where data is reported in subsequent Annual or Surrender Reports, values were compared.

•	Routine validation completed on data entered values against original report.
•	Data entered assay values were randomly validated against source data at roughly two samples per page.

WA DMP Technical	57777
Report (WAMEX)	
Number	
Year	1998
Title	Annual report on exploration for the period 2 March 1998 to 1 March 1999;
	Mount Burgess JV area; Isdell Joint Venture
Operator	Normandy Exploration Ltd
Tenement IDs	E45/857 Granted 11 November 1988, 12.82km² (pending MLA grant)
(overlapping current	M45/548 Granted 2 March 1993, 900Ha
tenure only)	M45/549 Granted 2 March 1993, 900Ha

AC Drill holes YAC028 to 040, 0714 to 0718, 0828 to 0835, 0846, 0850 to 0903, 0907 to 0923, 0948, 0972 to 0975, 0987 to 0989, 0998 to 1004, 1637 to 1641, 1653 to 1655, and 2267 to 2286:

Drilling Details

Location	 Regional Drilling was based on a nominal 400m by 200m pattern. Collar positions were located using a GPS. Collar locations are reported in AMG coordinates. Digital drill hole data is provided with the report.
Drilling Techniques	 Drilling was completed by Orbit Drilling Pty Ltd using a 6WD Landcruiser mounted Edson 150 Aircore rig. BQ and NQ rods were used, BQ with blade bit only and NQ with blade and hammer bits. For NQ an auxiliary air compressor was used.
Drilling Depth	End of Hole depth as reported.
Downhole Survey	All holes were vertical.

Sampling Techniques Drill Sample Recovery	•	The material immediately above the bedrock interface (i.e. palaeosoil) and bedrock chips were collected where possible. Samples were collected in 150mm diameter PVC buckets beneath the cyclone. EOH chips were always collected. 2 kg samples were sent to Genalysis Laboratory Services Pty Ltd in Perth. Not reported.					
Sub-sampling techniques			eported. eported.				
and sample preparation							
Digestion Method	•	Aqua	regia.		1	T	
Analysis Method			Element	Method	Detection Limit	Units	
			Au	B*ETA	0.1	ppb	
			Fe	B/OES	0.01	%	
			Mn	B/OES	1	ppm	
			Ca	B/OES	0.01	%	
			Cu	B/OES	1	ppm	
			Pb	B/OES	2	ppm	
			ZN	B/OES	1	ppm	
			Bi	B/MS	0.01	ppm	
			Мо	B/MS	1	ppm	
			As	B/MS	0.1	ppm	
			In	B/MS	0.01	ppm	
			Sn	B/MS	0.05	ppm	

				T		1		
		W	B/MS	0.05	ppm			
	B digestion uses aqua regia digest.							
	• ETA							
	extr	extra sensitivity. OES refers to determination by Inductively Coupled Plasma-Optical						
		Emission Spectrometry.						
	_		tection by Indi	uctively Coupled Plas	sma-Mas	S		
		ctrometry.						
Reported Units	• See	above tabl	e.					
Quality of assay data and	 Not 	reported.						
laboratory tests								
Verification of sampling	• Rou	tine validat	ion completed	on data entered valu	ies again	st original		
and assaying	repo	ort.						
Location of data	 Drill 	hole data ir	cluding sampl	e and assay informa	tion provi	ded digitally.		
Data spacing and	 N/A 							
distribution								
Orientation of data in	 N/A 			·				
relation to geological								
structure								
Sample security	Not	reported/do	cumented.					

Logging • Geological Logging reported.	
--	--

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at roughly 2 samples per page.

WA DMP Technical	60195
Report (WAMEX)	
Number	
Year	2000
Title	Annual report on exploration for the period 2 March 1999 to 1 March 2000;
	Mount Burgess JV area; Isdell Joint Venture
Operator	Normandy Exploration Ltd
Tenement IDs	E45/857 Granted 11 November 1988, 12.82km ² (pending MLA grant)
(overlapping current	M45/548 Granted 2 March 1993, 900Ha
tenure only)	M45/549 Granted 2 March 1993, 900Ha

Regional RAB drilling YRB2496 to 2576:

Drilling Details

Location	Regional Drilling was based on a nominal 400m by 200m pattern. Caller positions were leasted using a CRS.
	Collar positions were located using a GPS.Collar locations are reported in AMG coordinates.
	 Digital drill hole data is provided with the report.
Drilling Techniques	 Drilling was completed by Challenge Drilling using a purpose built 4WD RAB/Aircore rig with 600CFM/250PSI compressor. NQ rods were used.
	 Drill type reported as RAB or AC.
Drilling Depth	 End of Hole depth as reported. Most holes penetrated only a short distance into bedrock. Depth of cover is variable with an average depth of less that 5m (up to 17m).
Downhole Survey	All holes were vertical.

On and the section in		-				/: 1 · · · · · · · · · · · · · · · · · ·
Sampling Techniques	•	The material immediately above the bedrock interface (i.e. palaeosoil) and bedrock chips were collected where possible. Samples were collected in 150mm diameter PVC buckets beneath the cyclone and laid out in 10m rows. Palaeosoil was sampled as a single m interval. 4m composite samples of residual material was also collected.				
	•		were always			
	•			to Amdel Laboratorie	es Limite	ed in Perth.
Drill Sample Recovery	•	Not reporte		to / lindor Laboratorie	JO Ellithic	74 HTT 014H.
Sub-sampling techniques	•			ind to a nominal -75μ	m pulp.	
and sample preparation				·		
Digestion Method	•	20 gm Aqu	a regia diges	st.	•	T
Analysis Method			Element	Detection Limit	Unit	
			Au	0.1	ppb	
			Cu	0.2	ppm	
			Pb	0.5	ppm	
			Zn	0.5	ppm	
			As	0.5	ppm	
			Ag	0.01	ppm	
			Мо	0.1	ppm	
			Bi	0.1	ppm	
			Sb	0.1	ppm	
			Mn	5	ppm	
			Se	0.5	ppm	
			Ca	100	ppm	
			Fe	100	ppm	
			Ni	1	ppm	
			Со	0.2	ppm	
			U	0.2	ppm	
			Те	0.1	ppm	
		5	Cd	0.1	ppm	
Papartad Units	•			ely Coupled Plasma-N	viass Sp	ectrometry.
Reported Units Quality of assay data and	•	See above		ol woo wodantakan ba	, tha !==!	usion of E0/
laboratory tests	•	duplicate a	nd standard			
Verification of sampling and assaying	•	Routine va report.	lidation comp	oleted on data entered	d values	against original
Location of data	•		ata including	sample and assay info	ormation	n provided digitally
Data spacing and	•	N/A	ata moraamy	campio and doday init	2711141101	. p. o ridod digitaliy.
distribution Orientation of data in		N/A				
relation to geological	•	IN/A				
structure						
Sample security	•	Not reporte	ed/documente	ed.		

Logging • Geological Logging reported.
--

Data Validation

Drill hole location	•	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	•	Where data is reported in subsequent Annual or Surrender Reports, values were compared.

•	Routine validation completed on data entered values against original report.
•	Data entered assay values were randomly validated against source data at roughly two samples per page

Infill RAB drilling YRB2000 to 2103, 2129 to 2138

Infill AC drilling YRB1001 to 1026, YBR2387 to 2468

Drilling Details

Location	 Regional Drilling was based on a nominal 400m by 200m pattern. Collar positions were located using a GPS. Collar locations are reported in AMG coordinates. Digital drill hole data is provided with the report.
Drilling Techniques	 Drilling was completed by Challenge Drilling using a purpose built 4WD RAB/Aircore rig with 600CFM/250PSI compressor. NQ rods were used.
Drilling Depth	 End of Hole depth as reported. Most holes penetrated only a short distance into bedrock. Depth of cover is variable with an average depth of less that 5m (up to 17m).
Downhole Survey	All holes were vertical.

Drill Sample Recovery Sub-sampling techniques and sample preparation Digestion Method	 The material immediately above the bedrock interface (i.e. palaeosoil) and bedrock chips were collected. Samples were collected in 150mm diameter PVC buckets beneath the cyclone and laid out in 10m rows. Samples of residual material were collected by scooping 1m from RAB or AC piles from the ground and compositing into 4m intervals. Wet samples were scooped from the sample hole collecting both cuttings (if present) and suspended clays. Palaeosoil was sampled as a single m interval. 4m composite samples of residual material was also collected. EOH chips were always collected. Composites greater that 100 ppb Au were resampled and assayed at 1m intervals. 2 kg samples were submitted to both Amdel Laboratories Limited in Perth and Genalysis Laboratory Pty Ltd, also of Perth. Not reported. Single stage mix and grind to a nominal -75μm pulp. Genalysis uses a 50 gm sample weight and an aqua regia digest. Amdel uses a 40 gm sample weight using an aqua regia digest. 				
Analysis Method	Element	Method	Detection Limit	Unit	
	Genalysis				
	Au	BETA	1	ppb	
	Cu	BAAS	1	ppm	
	Fe	BAAS	0.01	%	
	Mn	BAAS	1	ppm	
	Pb	BAAS	1	ppm	
	Zn	BAAS	1	ppm	
	Amdel				
	Au	AA9	1	ppb	
	Cu	IC9	1	ppm	
	Fe	IC9	0.01	%	
	Mn	IC9	5	ppm	

			ĺ		ĺ	
	Pb		IC9	3	ppm	
	Zn		IC9	1	ppm	
	•	B digestion use ETA is a carbo		a digest. AAS gold determina	ation modi	fied to provide
		extra sensitivit	,			
	•	-		nite furnace AAS.		
	•	IC9 uses ICP-0	OES.			
Reported Units	•	See above tab	le.			
Quality of assay data and	•	Laboratory qua	ality control v	was undertaken by	the inclusi	on of 5%
laboratory tests		duplicate and	standard sar	nples.		
Verification of sampling	•	Routine valida	tion complet	ed on data entered	values ag	ainst original
and assaying		report.				
Location of data	•	Drillhole data i	ncluding sar	nple and assay info	rmation pr	ovided digitally.
Data spacing and	•	N/A				
distribution						
Orientation of data in	•	N/A				
relation to geological						
structure						
Sample security	•	Not reported/d	ocumented.			

Logging	Geological Logging reported.
---------	------------------------------

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page

RC drilling (4) YRC001 to 004:

Drilling Details

Location	 Collar positions were located using a GPS. Collar locations are reported in AMG coordinates. Digital drill hole data is provided with the report.
Drilling Techniques	Drilling was completed by Century Drilling Limited using a Universal 1000 drill-rig mounted on a twin steer bogey drive truck with a 900CFM/300PSI compressor, 1800CFM/950PSI booster and 1100CFM/350PSI auxiliary compressor.
Drilling Depth	End of Hole depth as reported.
Downhole Survey	All holes were vertical.

Sampling Techniques	•	 1m samples were collected using a riffle splitter. Reference drill chips were collected for each interval. 				
	•	4m composite	4m composite samples of residual material was also collected. Samples were submitted to Amdel Laboratories Limited in Perth.			
Drill Sample Recovery	•	Not reported.				
Sub-sampling techniques and sample preparation	•	Single stage m	nix and grind	to a nominal -75μn	n pulp.	
Digestion Method	•	50 gm sample	weight using	g an aqua regia dig	est.	
Analysis Method	Eleme	ent	Method	Detection Limit	Unit	
	Au		AA9	1	ppb	
	As		IC9	1	ppm	
	Bi		IC9	5	ppm	

	Cu		IC9	1	ppm	
	Fe		IC9	0.01	%	
	Mn		IC9	5	ppm	
	Pb		IC9	3	ppm	
	Zn		IC9	1	ppm	
	•	AA9 is analyse IC9 uses ICP-		nite furnace AAS.		•
Reported Units	•	See above tab	le.			
Quality of assay data and laboratory tests	•	Laboratory qua	•	was undertaken by nples.	the inclusi	on of 5%
Verification of sampling and assaying	•	Routine valida report.	tion complet	ed on data entered	values ag	ainst original
Location of data	•	Drillhole data i	ncluding sar	nple and assay info	rmation pr	ovided digitally.
Data spacing and distribution	•	N/A	_	•		•
Orientation of data in relation to geological structure	•	N/A				
Sample security	•	Not reported/d	locumented.			

Logging	Geological Logging reported.
---------	------------------------------

Data Validation

Drill hole location	 Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at roughly two samples per page.

WA DMP Technical	61906
Report (WAMEX)	
Number	
Year	2001
Title	Annual report on exploration for the period 2 March 2000 to 1 March 2001;
	Mount Burgess JV area; Isdell Joint Venture
Operator	Normandy Exploration Ltd
Tenement IDs	E45/857 Granted 11 November 1988, 12.82km ² (pending MLA grant)
(overlapping current	M45/548 Granted 2 March 1993, 900Ha
tenure only)	M45/549 Granted 2 March 1993, 900Ha

Aircore drilling YRB5042 to 5050, 5055 to 5057, and 5080 to 5097

Drilling Details

Location Drilling Techniques	 Drilling was based on 50m spacing on traverses spaced 200m apart. Drill traverses were gridded using a DGPS and compass/chain lines. Collar positions were located using a GPS. Collar locations are reported in AMG coordinates. Digital drill hole data is provided with the report. Drilling was completed by Grimwood Davies Pty Ltd using a purpose
	built RAB/Aircore rig with 900CFM/350PSI compressor mounted on a 6x6 truck.
Drilling Depth	End of Hole depth as reported.
	 Holes drilled to approximately 100m depth.
Downhole Survey	 All holes were drilled at 60°.

Sampling Techniques Drill Sample Recovery Sub-sampling techniques	 Samples were collected in 150mm diameter PVC buckets and laid out in 10m rows. Palaeosoil was sampled as a single m interval. 4m composite samples of residual material was also collected. Samples scooped from wet 1m piles collected both rock chips and clays. 2 kg samples were sent to Amdel Laboratories Limited in Perth. Not reported. Single stage mix and grind to a nominal -75µm pulp. 					
and sample preparation	• , 	Single stage in	ix and gillid	ιο a ποιπιπαι -75μπ	n puip.	
Digestion Method	•	Aqua regia dige	est on a 40	gm sample weight.		
Analysis Method	Elemer		Method	Detection Limit	Unit	
	Au		AA9	1	ppb	
	As		IC9	1	ppm	
	Bi		IC9	5	ppm	
	Cu		IC9	1	ppm	
	Fe		IC9	0.01	%	
	Mn		IC9	5	ppm	
	Pb		IC9	3	ppm	
	Zn		IC9	1	ppm	
		AA9 is analyse IC9 uses ICP-0	• .	nite furnace AAS.		
Reported Units	• ;	See above tabl	e.			
Quality of assay data and laboratory tests		Laboratory qua duplicate and s		was undertaken by nples.	the inclusi	on of 5%
Verification of sampling	Routine validation completed on data entered values against original				ainst original	
and assaying		report.				
Location of data			ncluding sar	nple and assay info	rmation pr	ovided digitally.
Data spacing and distribution		N/A				
Orientation of data in relation to geological structure	•	N/A				
Sample security	•	Not reported/do	ocumented.			

I a maile a	
I Logging	Geological Logging reported.

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at roughly two samples per page.

WA DMP Technical	61907
Report (WAMEX)	
Number	
Year	2001
Title	Annual report on exploration for the period 1 January 2000 to 31 December
	2000; 17 Mile Hill Dome Group; Crofton Joint Venture
Operator	Normandy Exploration Ltd
Tenement IDs	M45/271 Granted 19/05/1988, 330.75 Ha (Pajero)
(overlapping current	M45/488 Granted 5/10/89, 948.75 Ha (Big Banana South)
tenure only)	

RAB/Aircore drilling YRB5064 to 5077, and 5127 to 5151:

Drilling Details

Location	 Drilling was based on 50m spacing on traverses spaced 200m apart. Drill traverses were gridded using a DGPS and compass/chain lines. Collar positions were located using a GPS. Collar locations are reported in AMG coordinates. Digital drill hole data is provided with the report.
Drilling Techniques	 Drilling was completed by Grimwood Davies Pty Ltd using a purpose built RAB/Aircore rig with 900CFM/350PSI compressor mounted on a 6x6 truck.
Drilling Depth	 End of Hole depth as reported. Holes drilled to approximately 100m depth.
Downhole Survey	All holes were drilled at 60°.

Drill Sample Recovery Sub-sampling techniques and sample preparation	10m rows.4m compositeSamples scoo2 kg samplesNot reported.	samples we ped from we were sent to	150mm diameter F re collected. t 1m piles collected Amdel Laboratories to a nominal -75μr	l both rock s Limited in	chips and clays.
Digestion Method	Aqua regia digest on a 40 gm sample weight.				
Analysis Method	Element	Method	Detection Limit	Unit	
	Au	AA9	1	ppb	
	As	IC9	1	ppm	
	Bi	IC9	5	ppm	
	Cu	IC9	1	ppm	
	Fe	IC9	0.01	%	
	Mn	IC9	5	ppm	
	Pb	IC9	3	ppm	
	Zn	IC9	1	ppm	
	Au	AA7	0.01	ppm	
	Ag	IC7	0.5	ppm	
	As	IC7	1	ppm	
	Bi	IC7	5	ppm	
	Cd	IC7	1	ppm	
	Со	IC7	2	ppm	
	Cr	IC7	2	ppm	
	Cu	IC7	1	ppm	
	Fe	IC7	0.01	%	

	Mn		IC7	5	ppm	
	Мо		IC7	1	ppm	
	Ni		IC7	1	ppm	
	Р		IC7	10	ppm	
	Pb		IC7	3	ppm	
	Sb		IC7	5	ppm	
	V		IC7	1	ppm	
	Zn		IC7	1	ppm	
	•	IC9 uses ICP-Composite sar assayed at 1 n AA7 uses a 50	OES. mples report netre interva) gm aqua re	nite furnace AAS. ing greater than 100 Is using AA7 and I0 gia digest and a fla gest and a carbon fu	C7. me AAS fi	nish.
Reported Units	•	See above tab	le.			
Quality of assay data and laboratory tests	•	Laboratory quaduplicate and	•	was undertaken by nples.	the inclusi	on of 5%
Verification of sampling and assaying	•	Routine valida report.	tion complet	ed on data entered	values ag	ainst original
Location of data	•		ncluding sar	nple and assay info	rmation pr	ovided digitally.
Data spacing and distribution	•	N/A				
Orientation of data in relation to geological structure	•	N/A				
Sample security	•	Not reported/d	ocumented.			

Logging • Geological Logging reported.
--

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at approximately two samples per page.

WA DMP Technical	64338
Report (WAMEX)	
Number	
Year	2001
Title	Annual report TELFER for the period 1 January 2001to 31 December 2001;
	Combined report C348/93
Operator	Mount Burgess Mining N.L.
Tenement IDs	E45/857 Converted to M45/663 and M45/664
(overlapping current	M45/548 Granted 2 March 1993, 900Ha
tenure only)	M45/549 Granted 2 March 1993, 900Ha
	M45/663 Granted 10 October 2001, 848Ha
	M45/664 Granted 10 October 2001, 4334Ha

RAB drilling (19 holes drilled for 983m) CRRB001 to 002, CRRB004 to 020:

Drilling Details

Location	•	Collar positions were located using a GPS.
	•	Collar locations are reported in AMG coordinates.
	•	Digital drill hole data is provided with the report.

Drilling Techniques	•	Drilling was completed by Leon Marsh Drilling Pty Ltd.
Drilling Depth	•	End of Hole depth as reported.
	•	Limited by deep oxidation profile and damp saprolitic clay.
Downhole Survey	•	Digital data included with report.

Sampling, Drilling and Analytical Techniques and Data

Drill Sample Recovery Sub-sampling techniques and sample preparation Digestion Method	•	 4m composite spear/grab samples were collected. Samples scooped from wet 1m piles collected both rock chips and clays. Anomalous composite samples were re-sampled and re-assayed at 1m intervals for AU only with Fire Assay using a 25g charge. Samples were transported to Genalysis Laboratories in Perth. Not reported. Not recorded. Aqua regia digest. 				
Analysis Method	•	Aqua regia digest. Detection				
	Elem	ent	Method	Limit	Unit	
	Au		AAS	0.1	ppm	
	As		AAS	5	ppm	
	Cu		AAS	1	ppm	
	Au*		Fire assay, AAS finish	0.01	ppm	
Reported Units	•	See above tab	le.			
Quality of assay data and laboratory tests	 Laboratory quality control was undertaken by the inclusion of 5% duplicate and standard samples. 					
Verification of sampling and assaying	Routine validation completed on data entered values against original report.					
Location of data	Drillhole data including sample and assay information provided digitally.					
Data spacing and distribution	N/A					
Orientation of data in relation to geological structure	•	N/A				
Sample security	•	Not reported/d	ocumented.			

Geological Logging

Logging • Geological Logging reported.
--

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page.

AC drilling (14 holes drilled for 1120m) CRAC016 to 029:

Drilling Details

Location	•	Collar positions were located using a GPS.
	•	Collar locations are reported in AMG coordinates.
	•	Digital drill hole data is provided with the report.
Drilling Techniques	•	Drilling was completed by Leon Marsh Drilling Pty Ltd.
Drilling Depth	•	End of Hole depth as reported.
Downhole Survey	•	Digital data included with report.

Sampling, Drilling and Analytical Techniques and Data

Drill Sample Recovery Sub-sampling techniques and sample preparation	 1m samples were collected from the rig and laid out in 10m rows. 4m composite spear/grab samples were collected. Samples scooped from wet 1m piles collected both rock chips and clays. Anomalous composite samples were re-sampled and re-assayed at 1m intervals for AU only with Fire Assay using a 25g charge. Samples were transported to Genalysis Laboratories in Perth. Not reported. Not recorded. Aqua regia digest. 				
Digestion Method Analysis Method					
Analysis Method	Element	Method	Detection Limit	Unit	
	Au	AAS	0.1	ppm	
	As	AAS	5	ppm	
	Cu	AAS	1	ppm	
	Au*	Fire assay, AAS finish	0.01	ppm	
		dditional assay methodology details inc th report.	luded in digita	al data pac	kage
Reported Units	See above table.				
Quality of assay data and laboratory tests	Laboratory quality control was undertaken by the inclusion of 5% duplicate and standard samples.				
Verification of sampling and assaying	Routine validation completed on data entered values against original report.				
Location of data	Drillhole data including sample and assay information provided digitally.				
Data spacing and distribution	Drillhole data including sample and assay information provided digitally. N/A				
Orientation of data in relation to geological structure	• N/	Α			
Sample security	• No	ot reported/documented.			

Geological Logging

Logging • Geological Logging reported.
--

Data Validation

Drill hole location	 Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page.

RC drilling (17 holes drilled for 989m) CCRC005 to 021:

Drilling Details

Location	•	Collar positions were located using a GPS.
	•	Collar locations are reported in AMG coordinates.
	•	Digital drill hole data is provided with the report.
Drilling Techniques	•	Drilling was completed by Leon Marsh Drilling Pty Ltd.
Drilling Depth	•	End of Hole depth as reported.
Downhole Survey	•	Digital data included with report.

Sampling Techniques	•	1m bulk samples were collected from the rig and laid out in 10m rows. Riffle split samples were collected at 1m intervals into calico bags.
	•	Samples were transported to Genalysis Laboratories in Perth.
Drill Sample Recovery	•	Not reported.

Sub-sampling techniques and sample preparation	•	Not recorded.				
Digestion Method	•	Aqua regia dig	est.			
Analysis Method	Eleme	ent	Method	Detection Limit	Unit	
	Au		AAS	0.1	ppm	
	As		AAS	5	ppm	
	Cu		AAS	1	ppm	
	Au		ICP-MS	1	ppb	
	As		ICP-MS	0.2	ppm	
	Cu		ICP-MS	0.5	ppm	
Reported Units	•	See above tab	le.			
Quality of assay data and laboratory tests	•	Laboratory quality control was undertaken by the inclusion of 5% duplicate and standard samples.				
Verification of sampling and assaying	•					
Location of data	•	Drillhole data including sample and assay information provided digitally.				
Data spacing and distribution	•	N/A				
Orientation of data in relation to geological structure	•	N/A				
Sample security	•	Not reported/d	ocumented.			

Logging	Geological Logging reported.
---------	------------------------------

Data Validation

Drill hole location	Data location was verified in MapInfo against multiple registered scanned images from other Annual Reports.
Assays	 Where data is reported in subsequent Annual or Surrender Reports, values were compared. Routine validation completed on data entered values against original report. Data entered assay values were randomly validated against source data at two samples per page.

Digital data for the following drill holes has been reported in WA DMIRS Surrender Reports, and original sources for this data cannot be found. As such, the location, sampling techniques, and assay details cannot be verified against (tabulated) historical reports.

<u>Drill Hole ID:</u>	WAMEX Report No.:
BL89-1 and BL89-3	A104954
CDR12031 to 12033	A104954
CRA403 to 414 and 438	A104954
SHR 010 to 019	A104954
SM201 to 211, 213, 215, 217, 301,	
313, 315, 317, 319, 311, 313, 315,	
602 to 604, 701 to 712, 801 to 806	A104594
SMH 72 to 86, 128 to 309	A104954
TX67 to 69	A65268
TX67 to 69	A65268

ADDENDUM TO JORC TABLE 1b – SURFACE SAMPLING: Chicken Ranch Area Exploration Licence Application (E45/4867) and Pajero Area Granted Exploration Licence (E45/4518):

Chicken Ranch area exploration licence application (E45/4867) and Pajero area granted exploration licence (E45/4518) individual breakdown of the surface sampling exploration programmes completed between 1975 to 2001 (NB: No on-ground exploration post 2001) which are the subject of this public disclosure:

Tenement	Company	Source Report	Report Date	Sample Type	No. Samples
	. ,			7.	•
E45/4518	GEOPECKO	ATR-7884	1/06/1978	ROCK	70
E45/4518	DUVAL	ATR-15374	31/12/1984	SURFACE	11
E45/4518	MIM	ATR-34762	31/12/1991	ROCK	1
E45/4518	MIM	ATR-38092	1/03/1993	LAG	49
E45/4518	MIM	ATR-40539	1/02/1994	LAG ROCK	8 6
E45/4518	MIM	ATR-44642	1/04/1995	LAG	3
E45/4518	MIM	ATR-45639	1/09/1995	ROCK	3
E45/4518	MTBURGESS	ATR-50693	1/04/1997	LAG ROCK	16 2
E45/4518	MTBURGESS	ATR-54530	1/01/1998	ROCK	10
E45/4518	MTBURGESS	ATR-54531	1/02/1998	ROCK	1
E45/4518	MTBURGESS	ATR-61906	1/02/2001	SOIL	7
E45/4518	MTBURGESS	ATR-65268	1/07/2002	ROCK	1
E45/4518	NEWCREST	ATR-35202	31/12/1991	LAG	22
E45/4518	NEWCREST	ATR-37527	31/12/1992	LAG ROCK	16 2
E45/4518	NEWCREST	ATR-50036	1/01/1997	ROCK	4
E45/4518	NEWMONT	ATR-22932	1/12/1987	ROCK	1
E45/4518	NORMANDY	ATR-61907	1/02/2001	LAG	161

		Source	Report	Sample	
Tenement	Company	Report	Date	Type	No. Samples
E45/4518	WMC	ATR-10025	18/01/1981	FeStone	1
E45/4867	GEOPECKO	ATR-7884	1/06/1978	ROCK	6
E45/4867	MIM	ATR-32832	1/01/1991	ROCK	8
E45/4867	MIM	ATR-34762	31/12/1991	LAG ROCK	30 16
E45/4867	MIM	ATR-38092	1/03/1993	COSTEAN LAG ROCK	79 354 48
E45/4867	MIM	ATR-40539	1/02/1994	LAG ROCK	52 6
E45/4867	MIM	ATR-44642	1/04/1995	LAG ROCK	112 1
E45/4867	MIM	ATR-45639	1/09/1995	ROCK	1
E45/4867	MIM	ATR-47879	1/02/1996	LAG	44
E45/4867	MIM	ATR-65268	1/07/2002	LAG ROCK	584 12
E45/4867	MTBURGESS	ATR-50509	1/03/1997	LAG	35
E45/4867	MTBURGESS	ATR-50693	1/04/1997	LAG	16
E45/4867	MTBURGESS	ATR-54530	1/01/1998	ROCK	16
E45/4867	MTBURGESS	ATR-54531	1/02/1998	ROCK	8
E45/4867	MTBURGESS	ATR-61906	1/02/2001	SOIL	6
E45/4867	MTBURGESS	ATR-65268	1/07/2002	ROCK	14
E45/4867	MTBURGESS	ATR-65271	1/07/2002	LAG	18
E45/4867	NEWCREST	ATR-37527	31/12/1992	LAG	1
E45/4867 E45/4867	NEWCREST	ATR-65268	1/07/2002	BLEG ROCK	12 6
	I	1		l	I