

RIO TINTO/ANTIPA – CITADEL PROJECT 2017 EXPLORATION PROGRAMME UPDATE – CALIBRE GROWING

Highlights

- 2017 Citadel Project Exploration Programme fully funded by Rio Tinto Exploration Pty Ltd.
- Assays received from Phase 1 air core and Phase 2 reverse circulation drilling programmes.
- Calibre South drilling demonstrates significant extensions to the known large-scale gold-copper deposit which remains open, with intercepts including:
 - 214.0m at 0.34 g/t gold and 0.07% copper from 98m down hole (17ACC0088) including:
 - 44.0m at 0.70 g/t gold and 0.13% copper from 234m also including;
 - 13.0m at 1.36 g/t gold and 0.20% copper from 265m; and
 - 25.0m at 0.54 g/t gold and 0.02% copper from 98m.
 - 4.0m at 2.36 g/t gold and 0.07% copper from 105m down hole (17ACC0087).
- Rimfire drilling results confirm significant exploration potential:
 - Anomalous results returned from multiple target areas within the greater Rimfire area;
 - Range of Rimfire target areas remain untested; and
 - Follow-up drilling potentially required.

Antipa Minerals Ltd ("Antipa") (ASX: **AZY**) is pleased to announce final results from the Citadel Project 2017 exploration programme, which was fully funded by Rio Tinto Exploration Pty Limited ("Rio Tinto"), a wholly owned subsidiary of Rio Tinto Limited.

The 2017 Phase 1 and Phase 2 funding is part of Rio Tinto's \$8 million earn-in expenditure pursuant the second stage of the \$60 million Citadel Project farm-in agreement between Rio Tinto and Antipa. The Citadel Project is 80km from Newcrest's world-class Telfer gold-copper-silver mine in the Paterson Province of Western Australia.

2017 Exploration Programme

The Citadel Project's 2017 exploration programme was divided into two phases. Phase 1 comprised geophysical surveys and the Rimfire region air core drilling programme. Phase 2 comprised a reverse circulation (RC) drilling programme designed to follow up targets generated during the Phase 1 exploration programme.

Both phases of the Citadel Project 2017 exploration programme are now complete (Figure 1), details and results are outlined below.

The objectives of the Citadel Phase 1 and Phase 2 programmes were:

• Generate Induced Polarisation (IP) targets within the eastern IP trend, including the Calibre South, Magnum North and Blue Steel prospects;

- Test Calibre South IP target (generated during Phase 1) and extend the strike length of the Calibre gold-copper-silver-tungsten deposit and expand the Mineral Resource opportunity;
- Test key target areas within the greater Rimfire 4.8km mineral system, including several adjacent targets identified in aeromagnetic data; and
- Generate further geochemical anomalies (i.e. gold / arsenic / copper / cobalt / bismuth) around the sub-circular Rimfire domal structure for immediate follow-up by Phase 2 RC drilling.

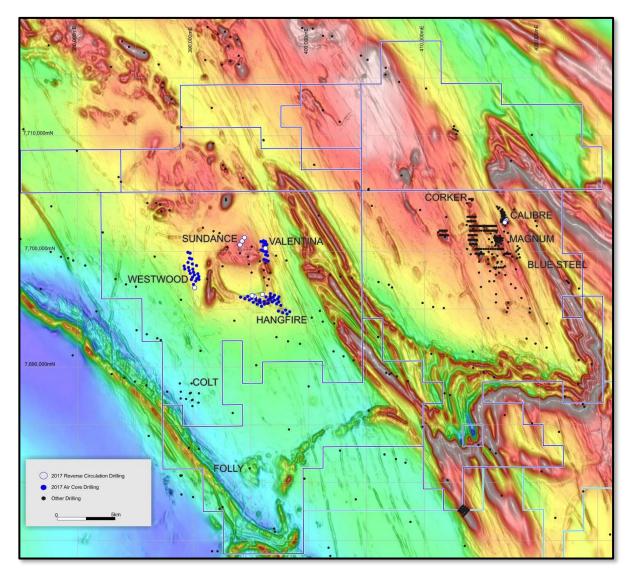
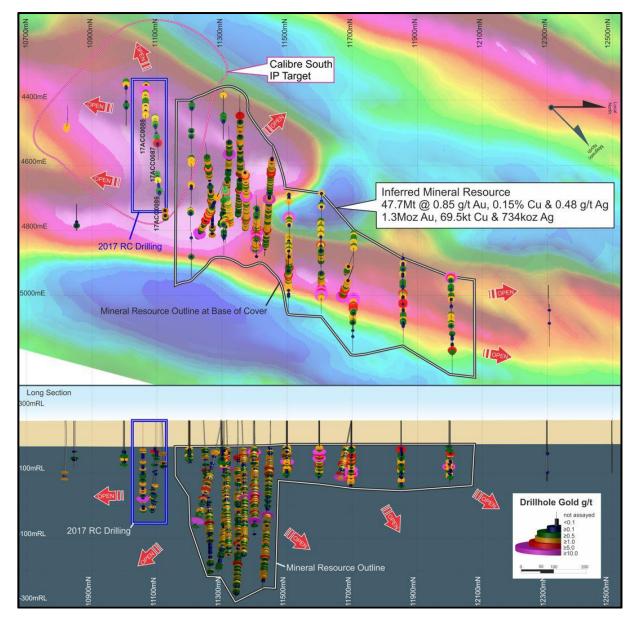


Figure 1: Air core and reverse circulation drill hole locations (in blue and white, respectively) with TMI RTP magnetics background. NB: Regional GDA94 / MGA Zone 51 coordinates and 10km grid.

Phase 2 – Calibre South Reverse Circulation Drilling


The Phase 2 programme involved the completion of eleven Reverse Circulation drill holes (2,490m total – Refer to Table 2) were completed across five target areas, including Calibre South (discussed below) and Rimfire targets Hangfire, Sundance, Valentina and Westwood (discussed subsequently in conjunction with the Phase 1 Rimfire air core results). RC targets

were selected based on geochemical, geophysical and geological criteria developed during the Phase 1 programme. The Phase 2 RC drilling programme was completed on the 4 December 2017.

At Calibre South three RC drill holes were completed (924m total) to test the Phase 1 IP chargeability anomaly located south of the Calibre gold-copper-silver-tungsten Mineral Resource. Drilling was conducted across a single fence with an average hole depth of 308m, with the average down hole depth of transported (post mineralisation) cover being 89m (Figures 2 and 3). All three holes intersected significant gold-copper-silver-tungsten mineralisation confirming extension of the known Calibre deposit mineralisation which remains open in several directions including to the south and west (Figures 2 and 3 and Table 1a).

Significant Calibre South Phase 2 RC drill results include:

- 17ACC0088 =
 - 214.0m at 0.34 g/t gold, 0.07% copper and 0.01% tungsten from 98m down hole including:
 - 25.0m at 0.54 g/t gold and 0.02% copper from 98m also including;
 - 7.0m at 1.17 g/t and 0.03% copper from 98 and;
 - 1.0m at 2.53 g/t gold and 0.01% copper from 119m.
 - 7.0m at 0.42 g/t gold and 0.21% copper from 140m also including;
 - 1.0m at 1.64 g/t and 0.87% copper from 140m.
 - 5.0m at 0.69 g/t gold and 0.13% copper from 160m also including;
 - 1.0m at 2.49 g/t gold and 0.28% copper from 163m.
 - 16.0m at 0.43 g/t gold and 0.14% copper from 200m also including;
 3.0m at 1.11 g/t gold and 0.21% copper from 213m.
 - 44.0m at 0.70 g/t gold and 0.13% copper from 234m also including;
 - 8.0m at 0.99 g/t gold and 0.21% copper from 239m;
 - 13.0m at 1.36 g/t gold and 0.20% copper from 265m also including;
 - 1.0m at 12.20 g/t gold and 0.69% copper from 265m.
 - 8.0m at 0.41 g/t gold and 0.06% copper from 299m.
- 17ACC0087 =
 - 4.0m at 2.36 g/t gold and 0.07% copper from 105m including;
 - 1.0m at 8.17 g/t gold and 0.10% copper from 106m.
 - 40.0m at 0.30 g/t gold and 0.06% copper from 234m including;
 - 3.0m at 1.21 g/t gold and 0.02% copper from 237m and;
 - 1.0m at 1.92 g/t gold and 0.43% copper from 261m and;
 - 1.0m at 0.92 g/t and 0.07% copper from 264m.
 - 15.0m at 0.32 g/t gold and 0.08% copper from 293m including;
 - 1.0m at 1.11 g/t gold and 0.4% copper from 293m.
- 17ACC0086 =
 - 4.0m at 1.30 g/t gold from 212m;
 - 14.0m at 0.18 g/t gold and 0.02% copper from 240m;
 - 11.0m at 0.33 g/t gold, 0.10% copper and 0.16% tungsten from 265m, including;
 - 1.0m at 0.34 g/t gold, 0.14% copper and 0.91% tungsten.

Figure 2: Long section of the Calibre gold-copper-silver-tungsten deposit showing existing Mineral Resource limit and recent extensions to the southern limits of the deposit. 2017 Phase 2 RC drilling indicated by the blue rectangle (section viewing northwest).

NB: Over Airborne magnetic image (150m flight-line spacing at an altitude of 30m; Reduced to Pole, NE-Sun illumination, First Vertical Derivative), 200m Calibre Local Grid.

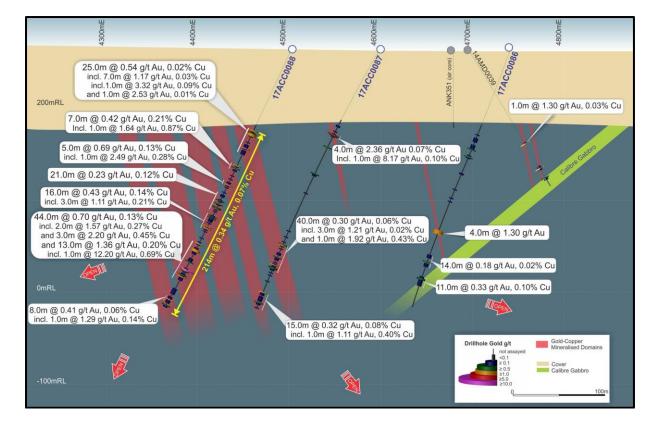


Figure 3: Cross section of the three-hole RC drill fence at Calibre deposit. Significant intercepts and mineralisation displayed. NB: 100m Calibre Local Grid.

Phase 1 – Rimfire Area Air Core Programme

The Rimfire area (Figures 1 and 4) is located approximately 25km west of the Company's Magnum and Calibre gold-copper-silver±tungsten deposits. The Rimfire area consists of a subcircular granitic intrusion (or pluton), with an approximate diameter of 5 to 6km, and a number of associated magnetic high anomalies (both linear and tabular in form), various VTEM electromagnetic conductivity anomalies and 'erratic' IP chargeability anomalies. The 2016 reconnaissance drill results confirmed that the Rimfire granite is a very large-scale copper, zinc, lead, gold, tungsten bearing hydrothermal mineral system which is highly prospective for very large scale Reduced Intrusion Related mineral deposits (RIRD).

Rimfire exploration opportunities include skarn style mineral systems, similar to Newcrest Mining Ltd's O'Callaghans tungsten-zinc-copper-lead skarn deposit which is located 9km southeast of the Telfer. Newcrest report the O'Callaghans' total Inferred and Indicated Mineral Resource as 78 million tonnes at 0.49% zinc, 0.33% tungsten trioxide (WO₃), 0.29% copper and 0.24% lead, with insitu contained metal of 390,000 tonnes of zinc, 260,000 tonnes of WO₃, 220,000 tonnes of copper and 190,000 tonnes of lead

(Ref: <u>http://www.newcrest.com.au/media/resource_reserves/2016/December_2016_Resources_and_Reserves_Statement.pdf</u>).

The Citadel Project air core drilling programme consisted of 77 drill holes for a total of 4,036m at an average hole depth of 52m (refer to Table 2). The programme tested several areas around the greater Rimfire area including Hangfire, Valentina, and Westwood (Figures 1 and 4). Drill hole spacing varied from 150m to 250m along section and 200m to 400m across section, testing

a range of geological, geophysical and geochemical targets. Infill drilling was completed on a results-driven basis. The occurrence of silcrete within transported cover significantly hindered drilling penetration and production, resulting in only 70% completion of the planned Phase 1 air core programme.

The Rimfire air core drilling programme was purely reconnaissance in nature. It should be noted that air core drilling is a first pass geochemical exploration method that only indicates the potential of an area or trend. Whilst the results can be low grade, they can indicate a higher likelihood for significant mineralisation to be nearby or at depth. Furthermore, gold and other mineralisation pathfinder elements can be depleted in the oxide zone which was the zone drilled in the current programme. Pathfinder elements which are strongly associated with the mineralisation also include bismuth, tungsten and lead.

The air core programme identified a number of high-priority geochemical targets for immediate follow up by the Phase 2 RC drilling programme (Intercepts are recorded in Table 1b). The Phase 1 and Phase 2 results highlight the mineralisation potential for the greater Rimfire area, with additional follow-up currently under review.

- Hangfire
 - Located on the southern flank of the Rimfire area;
 - 35 air core drill holes (1,500m total) were completed with an average hole depth of 43m;
 - Significant Phase 1 air core geochemical results include:
 - 17ACA0026 Anomalous copper and silver (1.0m at 297 ppm copper and 4.27 g/t silver from 28m);
 - 17ACA0028 Anomalous copper and zinc (17.0m at 317 ppm copper and 234 ppm zinc from 45m);
 - 17ACA0039 Anomalous gold (8.0m at 0.12 g/t gold, 387 ppm copper, 123 ppm cobalt and 300 ppm zinc from 37m to end of hole (EOH)); and
 - A distinct zone of Ag-Au-Bi-Cu-Pb-Ni-W anomalism identified in the northern part of the prospect.
- Westwood
 - Located on the western flank of the Rimfire area;
 - 24 air core drill holes (1,529m total) were completed with an average hole depth of 63m;
 - Significant Phase 1 air core geochemical results include:
 - 17ACA0062 Anomalous silver (22.0m at 1.06 g/t silver from 58m to EOH);
 - 17ACA0066 Anomalous copper and zinc (14.0m at 274 ppm copper and 263 ppm zinc from 54m to EOH);
 - 17ACA0070 Anomalous silver, copper and zinc (9.0m at 0.24 g/t silver, 217 ppm copper and 250 ppm zinc from 49m to EOH); and
 - 17ACA0077 Anomalous copper and zinc (6.0m at 426 ppm copper and 364 ppm zinc from 50m).

• Valentina

- Located on the north-eastern flank of the Rimfire area;
- 18 air core drill holes (1,007m total) were completed with an average hole depth of 56m;
- Significant Phase 1 air core geochemical results include:
 - 17ACA0008 Anomalous copper (10.0m at 207 ppm copper from 51m);
 - 17ACA0012 Anomalous zinc (1.0m at 728 ppm zinc from 43m); and
 - 17ACA0018 Anomalous gold and zinc (4.0m at 0.03 g/t gold and 298 ppm zinc from 53m to EOH).

Phase 2 – Rimfire Area Reverse Circulation Drilling

A total of only eight RC drill holes were completed at four target areas following up on anomalous geochemical results from the Phase 1 air core drill holes and 2016 reconnaissance RC drill holes. All eight drill holes identified significant geochemical anomalism (i.e. gold, copper \pm zinc \pm silver \pm tungsten) with significant intercepts listed below and summarised by Figure 4 and Table 1a. The consistent and frequent nature of geochemical anomalism at the Rimfire area highlights the exploration potential of the area.

- Hangfire
 - Three RC drill holes were completed (448m total) with an average depth of 150m.
 - Drill holes were planned as follow up to anomalous copper and zinc ± gold ± cobalt identified in Phase 1 air core drilling highlighting the significant potential for intrusion related, skarn style mineralisation.
 - Significant Phase 2 RC results include:
 - 17ACC0092 =
 - 1.0m at 1,185 ppm copper, 176 ppm cobalt and 268 ppm zinc;
 - 2.0m at 0.69 g/t gold and 7,741 ppm copper from 83m including;
 - 1.0m at 1.0 g/t gold and 10,300 ppm (1.03%) copper from 83m and;
 - 6.0m at 525 ppm copper from 91m including;
 - 1.0m at 1,370 ppm copper from 91m.
 - 17ACC0093 =
 - 5.0m at 208 ppm copper from 36m and;
 - 12.0m at 433 ppm copper from 132m including;
 - 2.0m at 1,295 ppm copper from 138m.
 - 17ACC0094 =
 - 8.0m at 339 ppm copper from 43m and;
 - 13.0m at 499 ppm copper from 54m including;
 - 1.0m at 1,395 ppm copper from 62m.

- Sundance
 - Three RC drill holes were completed (878m total) with an average depth of 292m.
 - The Sundance prospect area is interpreted to be a possible intrusion related skarn mineral system. The primary target is a broad magnetic feature up to 3km x 2km in size. The three RC holes intersected anomalous gold, copper and zinc.
 - Significant Phase 2 RC results include:
 - 17ACC0089 =
 - 2.0m at 0.14 g/t gold and 199 ppm copper from 61m and;
 - 6.0m at 0.11 g/t gold and 969 ppm copper from 254m including;
 - 1.0m at 0.26 g/t gold and 1,730 ppm copper from 254m.
 - 17ACC0090 =
 - 2.0m at 0.19 g/t gold from 97m and;
 - 4.0m at 863 ppm zinc from 191m including;
 - 1.0m at 1,945 ppm zinc from 192m.
 - 17ACC0091 =
 - 9.0m at 474 ppm zinc from 51m including;
 - 1.0m at 1,160 ppm zinc from 52m.

Westwood

- One RC drill hole was completed to a depth of 132m, following up on copper, cobalt and zinc anomalism identified in 17ACA0077 (details below). 17ACC0096 intersected anomalous copper and zinc.
- Significant Phase 2 RC results include:
 - 17ACC0096 =
 - 2.0m at 482 ppm copper and 333 ppm zinc from 49m including;
 - 1.0m at 772 ppm copper and 481 ppm zinc from 50m.

• Valentina

- One RC drill hole was completed at Valentina to a depth of 108m.
- This drill hole was designed to test gold anomalism detected in 17ACA0018 (details above). 17ACC0095 intersected anomalous copper and zinc.
- Significant Phase 2 RC results include:
 - 17ACC0095 =
 - 5.0m at 339 ppm copper and 245 ppm zinc from 53m.

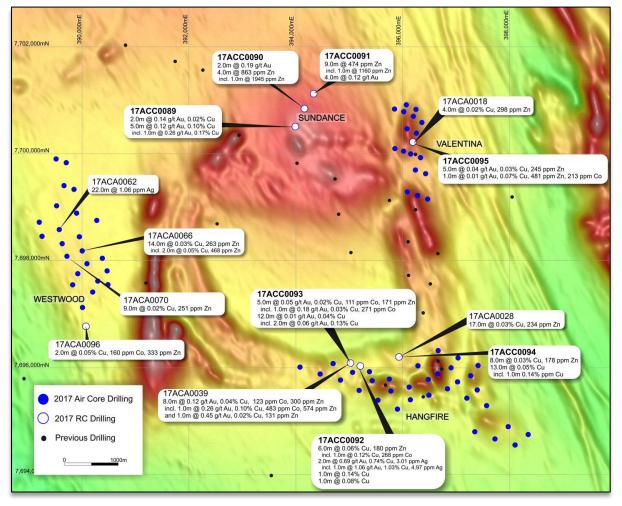
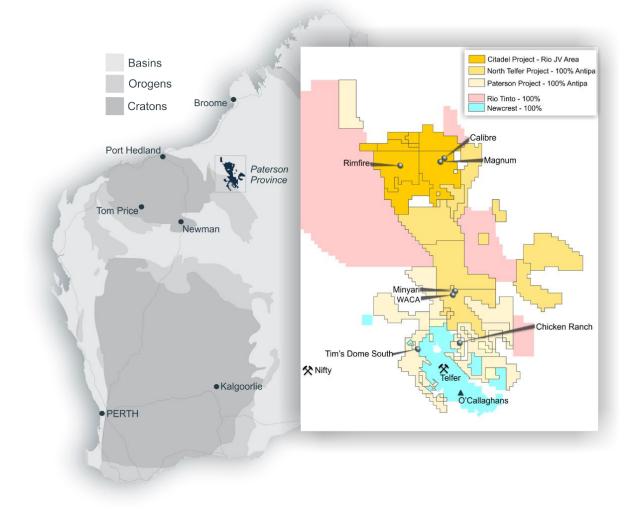


Figure 4: Plan view of the Rimfire area showing prospects, drill holes and significant drill results. NB: Regional GDA94 / MGA Zone 51 coordinates and 2km grid.

Citadel Project 2018 Exploration Programme

Planning for the Citadel Project 2018 exploration programme is in progress, and field activities are expected to commence during the first (calendar year) quarter, subject to any changes which may be made consequent upon results, field conditions and ongoing review. Details of the Citadel Project exploration programme will be provided once finalised.

For further information, please visit <u>www.antipaminerals.com.au</u> or contact:


Roger Mason
Managing Director
Antipa Minerals Ltd
+61 (0)8 9481 1103

Stephen Power Executive Chairman Antipa Minerals Ltd +61 (0)8 9481 1103

About Antipa Minerals:

Antipa Minerals Ltd is an Australian public company which was formed with the objective of identifying underexplored mineral projects in mineral provinces which have the potential to host world-class mineral deposits, thereby offering high leverage exploration potential. The Company owns a 1,335km² package of prospective granted tenements in the Paterson Province of Western Australia known as the Citadel Project. The Citadel Project is located approximately 75km north of Newcrest's Telfer gold-copper-silver mine and includes the gold-coppersilver±tungsten Mineral Resources at the Calibre and Magnum deposits and high-grade polymetallic Corker deposit. Under the terms of a Farm-in and Joint Venture Agreement with Rio Tinto Exploration Pty Limited ("Rio Tinto"), a wholly owned subsidiary of Rio Tinto Limited, Rio Tinto can fund up to \$60 million of exploration expenditure to earn up to a 75% interest in Antipa's Citadel Project.

The Company has an additional 2,645km² of exploration licences (including both granted tenements and applications), known as the North Telfer Project which includes the gold-copper-silver±cobalt Mineral Resources at the Minyari and WACA deposits and extends its ground holding in the Paterson Province to within 20km of the Telfer Gold-Copper-Silver Mine and 30km of the O'Callaghans tungsten and base metal deposit. The Company has also acquired, from the Mark Creasy controlled company Kitchener Resources Pty Ltd, additional exploration licences in the Paterson Province which are now all granted and cover 1,527km² and the Company owns a further 313km² of exploration licences (including both granted tenements and applications), which combined are known as the Paterson Project, which comes to within 3km of the Telfer mine and 5km of the O'Callaghans deposit.

Competent Persons Statement:

The information in this report that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Roger Mason, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Mason is a full-time employee of the Company. Mr Mason is the Managing Director of Antipa Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Mason has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mason consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to relates to the estimation and reporting of the Calibre deposit Mineral Resource is extracted from the report entitled *"Calibre and Magnum Deposit Mineral Resource JORC 2012 Updates"* created on 23 February 2015 and are available to view on <u>www.antipaminerals.com.au</u>. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Various information in this report which relates to Citadel Project Exploration Results reported here is extracted from the following:

- Report entitled "Citadel Project Phase 2 Drilling Programme Twin Success" created on 13 December 2012;
- Report entitled "Citadel Project Calibre Deposit Major Gold-Copper Discovery" created on 4 February 2013;
- Report entitled "Citadel Project 2013 Exploration Programme Calibre Deposit Focus of Phase 1" created on 11 February 2013;
- Report entitled "Calibre Exploration Update" created on 25 February 2013;
- Report entitled "Calibre Deposit Third Drillhole Preliminary Results" created on 7 March 2013;
- Report entitled "Calibre Deposit Third Drillhole Assay Results" created on 27 March 2013;
- Report entitled "Calibre Deposit Assay Results and New DHEM Anomaly" created on 15 April 2013;
- Report entitled "Calibre Deposit Fifth Drillhole Assay Results" created on 19 April 2013;
- Report entitled "Calibre Deposit Sixth Drillhole Assay Results" created on 29 April 2013;
- Report entitled "Calibre Deposit FLEM and Magnetics Survey Results" created on 15 May 2013;
- Report entitled "Calibre Deposit Seventh Drillhole Assay Results" created on 1 August 2013;
- Report entitled "Calibre Deposit Exploration Update" created on 2 September 2013;
- Report entitled "Calibre Deposit Maiden Mineral Resource Estimate" created on 28 October 2013;
- Report entitled "Calibre Deposit Positive Concept Study completed by Snowden" created on 30 October 2013;
- Report entitled "Surveys extend and upgrade Calibre and Corker target areas" created on 26 March 2014;
- Report entitled "Phase 2 Geochemical Surveys Define Calibre and Matilda Drill Targets" created on 28 April 2014;
- Report entitled "2014 Exploration Programme Drilling Commences at Calibre" created on 16 May 2014;
- Report entitled "Positive Metallurgical Results for Calibre" created on 28 May 2014;
- Report entitled "2014 Drilling Programme Update" created on 29 May 2014;
- Report entitled "2014 Drilling Programme Update" created on 25 July 2014;
- Report entitled "Citadel Project Calibre High Grade Opportunity" created on 9 September 2014;
- Report entitled "Calibre & Magnum Mineral Resources JORC 2012 Updates" created on 23 February 2015;
- Report entitled "Calibre Drilling Programme Commenced" created on 15 May 2015;
- Report entitled "Calibre Deposit Drilling Update No. 1" created on 18 June 2015;
- Report entitled "Calibre Deposit Drilling Update No. 2" created on 2 July 2015;
- Report entitled "Calibre Deposit Drilling Update No. 3" created on 10 July 2015;
- Report entitled "Calibre Deposit Drilling Update No. 4" created on 28 July 2015;
- Report entitled "Rio Tinto Antipa Citadel Project Joint Venture" created on 9 October 2015;
- Report entitled "*Calibre Drilling October 2015 No. 1*" created on 16 October 2015;
- Report entitled "Calibre Drilling October 2015 No. 2" created on 22 October 2015;
- Report entitled "Calibre 2015 Phase 2 Drilling Update No. 3" created on 17 November 2015;
- Report entitled "Calibre 2015 Phase 2 Drilling Update" created on 30 November 2015;

- Report entitled "Calibre 2015 Drilling Phase 2 Results" created on 16 December 2015;
- Report entitled "Citadel Project IP Survey Identifies Multiple Chargeability Anomalies along 20km Calibre Trend" created on 24 June 2016;
- Report entitled "Citadel Project Rio Tinto Funded 2017 Exploration Programme" created on 12 April 2017;
- Report entitled "Rio Tinto Elects to Proceed to Stage 2 of Citadel Farm-In" created on 12 April 2017;
- Report entitled "Citadel Project Exploration Update" created on 2 October 2017;
- Report entitled "Citadel Project Exploration Update" created on 8 November 2017; and
- Report entitled "Calibre Mineral Resource Update" created on 17 November 2017.

Which are available to view on <u>www.antipaminerals.com.au</u> and <u>www.asx.com.au</u>. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements.

Forward-Looking Statements:

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Antipa Mineral Ltd's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward-looking statements. Although Antipa Minerals Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Table 1a: Citadel 2017 Phase 2 Reverse Circulation Drill Hole Gold-Copper-Silver-Zinc-Tungsten Key Assay Results (i.e. \ge 1.0m with Au \ge 0.1 g/t and/or Cu \ge 200 ppm and/or Ag \ge 0.5 g/t and/or Zn \ge 200 ppm and/or W \ge 100 ppm)

Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Tungsten (ppm)	Zinc (ppm)
17ACC0086	99	100	1	0.09	277	0.10	18	74
17ACC0086	100	101	1	0.12	174	0.08	13	75
17ACC0086	104	108	4	0.17	68	0.06	230	67
17ACC0086	108	109	1	0.20	78	0.19	121	101
17ACC0086	110	111	1 4	0.04	322	0.12	38	91
17ACC0086 17ACC0086	112 116	116 117	4 1	0.10 0.39	171 202	0.10 0.10	9 15	63 63
17ACC0086 17ACC0086	116	117	1	0.39	135	0.10	40	96
17ACC0086	124	118	1	0.20	221	0.14	40 86	50 60
17ACC0086	124	123	1	0.58	529	0.28	1,920	128
17ACC0086	127	128	1	0.19	297	0.12	158	125
17ACC0086	144	145	1	0.01	125	0.06	129	55
17ACC0086	145	146	1	0.46	855	0.58	420	104
17ACC0086	146	147	1	0.34	445	0.35	30	114
17ACC0086	164	165	1	0.36	102	0.15	22	116
17ACC0086	165	166	1	0.08	414	0.26	30	70
17ACC0086	174	175	1	0.20	3,440	2.03	137	112
17ACC0086	175	176	1	0.03	371	0.23	88	68
17ACC0086	176	177	1	0.05	393	0.24	39	106
17ACC0086	177	178	1	0.09	451	0.17	84	93
17ACC0086	178	179	1	0.22	161	0.07	6	56
17ACC0086	212	216	4	1.30	24	0.12	13	52
17ACC0086	240	244	4	0.12	50	0.03	6	54
17ACC0086	244	248	4	0.09	38	0.03	6	54
17ACC0086	248	249	1	0.60	97	0.11	4	126
17ACC0086	249	250	1	0.09	108	0.05	230	89
17ACC0086	250	251	1	0.28	621	0.18	1,190	165
17ACC0086	251	252	1	0.40	598	0.21	56	128
17ACC0086	252	253	1	0.16	471	0.16	169	132
17ACC0086	253	254	1 1	0.21	796	0.24	60 42	202 124
17ACC0086 17ACC0086	254 255	255 256	1	0.07 0.03	292 367	0.10 0.12	43 17	124
17ACC0086	255	250	1	0.00	273	0.12	9	135
17ACC0086	257	258	1	0.08	551	0.05	18	140
17ACC0086	258	259	1	0.02	489	0.12	10	188
17ACC0086	259	260	1	0.03	558	0.12	42	232
17ACC0086	260	261	1	0.06	2,000	0.34	280	211
17ACC0086	261	262	1	0.03	591	0.18	22	187
17ACC0086	262	263	1	0.05	555	0.13	11	208
17ACC0086	263	264	1	0.07	481	0.18	187	204
17ACC0086	264	265	1	0.09	497	0.13	450	198
17ACC0086	265	266	1	0.12	580	0.17	450	184
17ACC0086	266	267	1	0.29	714	0.23	1,050	191
17ACC0086	267	268	1	0.56	1,260	0.43	1,590	207
17ACC0086	268	269	1	0.65	1,350	0.43	2,270	232
17ACC0086	269	270	1	0.39	998	0.30	1,100	198
17ACC0086	270	271	1	0.45	758	0.24	1,000	160
17ACC0086	271	272	1	0.21	1,630	0.40	148	209
17ACC0086	272	273	1	0.15	956	0.23	43	245
17ACC0086	273	274	1	0.35	998	0.33	158	230
17ACC0086	274	275	1	0.34	1,385	0.37	9,070	258
17ACC0086	275	276	1	0.12	898 929	0.22	350	242
17ACC0086 17ACC0086	276 277	277 278	1 1	0.04 0.05	929 808	0.21 0.19	38 24	201 189
17ACC0086	278	278	1	0.03	654	0.15	53	189
17ACC0086	278	279	1	0.03	676	0.15	29	189
17ACC0086	279	280	1	0.01	838	0.13	29	208
17ACC0086	281	281	1	0.04	1,435	0.32	1,200	203
17ACC0086	281	282	1	0.04	564	0.32	1,200	131
17ACC0086	283	284	1	0.01	237	0.08	37	69
17ACC0087	93	94	1	0.08	437	0.12	32	137
17ACC0087	94	95	1	0.05	347	0.10	202	81
17ACC0087	95	96	1	0.16	181	0.10	48	70
17ACC0087	96	97	1	0.15	383	0.12	11	61
17ACC0087	102	103	1	0.16	459	0.30	5	152

Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Tungsten (ppm)	Zinc (ppm)
17ACC0087	105	106	1	0.32	517	0.39	11	71
17ACC0087	106	107	1	8.17	987	1.10	36	112
17ACC0087	107	108	1	0.78	934	0.60	81	123
17ACC0087	108	109	1	0.19	175	0.10	57	81
17ACC0087	109	110	1	0.03	219	0.10	310	83
17ACC0087	119	120	1	0.06	352	0.20	156	82
17ACC0087	120	121	1	0.05	955	0.56	131	98 101
17ACC0087	121	122	1 1	0.73	1,955	0.92 0.12	54 26	101 43
17ACC0087 17ACC0087	122 132	123 136	4	0.05 0.02	320 27	0.12	1,060	43 39
17ACC0087	148	149	1	0.01	452	0.22	540	73
17ACC0087	153	154	1	0.97	95	0.29	17	37
17ACC0087	154	155	1	0.11	33	0.06	21	35
17ACC0087	155	156	1	0.10	85	0.09	8	38
17ACC0087	163	164	1	0.01	1,315	0.62	31	86
17ACC0087	164	165	1	0.06	647	0.33	110	82
17ACC0087	165	166	1	0.01	213	0.07	66	57
17ACC0087	166	167	1	0.05	563	0.16	23	61
17ACC0087	172	173	1	0.05	395	0.18	209	39
17ACC0087	174	175	1	0.02	328	0.25	54	32
17ACC0087	176	177	1	0.34	523	0.26	55	59
17ACC0087	221	222	1	0.16	216	0.12	6	61
17ACC0087	228	229	1	0.47	140	0.08	17	60
17ACC0087	229	230	1	0.01	410	0.14	83	51
17ACC0087	230	231	1	0.09	1,260	0.47	32	80
17ACC0087	232	233	1	0.02	336	0.14	41	45
17ACC0087	234	235	1	0.25	414	0.21	28	56
17ACC0087	235	236	1	0.07	92	0.06	11	53
17ACC0087	236	237	1	0.03	148	0.06	8	52
17ACC0087	237 238	238 239	1 1	0.67	170 485	0.21 0.59	6 7	57 57
17ACC0087 17ACC0087	238	239	1	2.73 0.23	485	0.59	5	57
17ACC0087 17ACC0087	239	240	1	0.23	42	0.48	8	51
17ACC0087	240	241	1	0.10	42 80	0.05	11	37
17ACC0087	241	242	1	0.24	1,460	0.57	11	38
17ACC0087	243	243	1	0.02	188	0.07	14	29
17ACC0087	244	245	1	0.00	28	0.02	460	22
17ACC0087	245	246	1	0.00	25	0.03	58	24
17ACC0087	246	247	1	0.02	172	0.08	21	37
17ACC0087	247	248	1	0.32	691	0.33	8	27
17ACC0087	248	249	1	0.14	1,120	0.48	14	40
17ACC0087	249	250	1	0.10	565	0.29	25	26
17ACC0087	250	251	1	0.01	158	0.08	12	23
17ACC0087	251	252	1	0.06	351	0.21	39	31
17ACC0087	252	253	1	0.55	2,530	1.62	13	63
17ACC0087	253	254	1	0.13	1,230	0.60	53	39
17ACC0087	254	255	1	0.42	1,430	0.73	37	43
17ACC0087	255	256	1	0.18	1,480	0.75	33	44
17ACC0087	256	257	1	0.04	378	0.17	15	29
17ACC0087	257 258	258 259	1	0.01	231	0.10	20	27
17ACC0087 17ACC0087	258	259	1 1	0.13 0.04	442 457	0.22 0.22	92 49	40 62
17ACC0087	260	261	1	0.04	297	0.22	49 26	73
17ACC0087	261	262	1	1.92	4,280	2.15	11	108
17ACC0087	262	263	1	0.21	1,340	0.56	380	63
17ACC0087	263	264	1	0.18	453	0.17	177	62
17ACC0087	264	265	1	0.92	689	0.29	122	53
17ACC0087	265	266	1	0.88	1,210	0.34	30	37
17ACC0087	266	267	1	0.32	712	0.31	62	45
17ACC0087	267	268	1	0.10	793	0.35	71	51
17ACC0087	268	269	1	0.00	31	0.03	12	43
17ACC0087	269	270	1	0.02	71	0.04	11	33
17ACC0087	270	271	1	0.37	120	0.10	8	52
17ACC0087	271	272	1	0.08	29	0.04	8	48
17ACC0087	272	273	1	0.07	543	0.23	13	50
17ACC0087	273	274	1	0.21	554	0.24	73	61
17ACC0087	280	281	1	0.10	600	0.32	55	64
17ACC0087	283	284	1	0.01	241	0.08	7	51
17ACC0087	285	286	1	0.01	293	0.08	23	51
17ACC0087	286	287	1	0.02	211	0.06	132	62

Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Tungsten (ppm)	Zinc (ppm)
17ACC0087	287	288	1	0.07	507	0.11	9	59
17ACC0087	290	291	1	0.04	324	0.13	16	49
17ACC0087	292	293	1	0.01	261	0.12	15	38
17ACC0087	293	294	1	1.11	4,010	1.69	370	87
17ACC0087	294	295	1	0.48	2,060	0.88	19	57
17ACC0087	295	296	1	0.21	1,795	0.96	88	84
17ACC0087	296 297	297	1 1	0.16	883	0.38	77 79	78 50
17ACC0087 17ACC0087	297	298 299	1	0.07 0.17	529 458	0.21 0.19	79 75	52 59
17ACC0087	298	300	1	0.17	332	0.19	59	53
17ACC0087	300	300	4	0.49	163	0.22	9	40
17ACC0087	304	305	4	0.09	103	0.06	13	39
17ACC0087	305	306	1	0.53	573	0.29	104	48
17ACC0087	306	307	1	0.23	616	0.23	50	41
17ACC0087	307	308	1	0.34	681	0.28	25	55
17ACC0087	311	312	1	0.24	359	0.17	440	40
17ACC0088	96	97	1	0.01	83	0.04	217	67
17ACC0088	98	99	1	1.50	558	0.39	34	58
17ACC0088	99	100	1	0.02	141	0.04	135	58
17ACC0088	100	101	1	0.12	171	0.05	380	58
17ACC0088	101	102	1	0.75	105	0.07	36	15
17ACC0088	102	103	1	1.26	46	0.11	7	4
17ACC0088	103	104	1	3.32	896	0.59	49	46
17ACC0088	104	105	1	1.23	250	0.69	66	33
17ACC0088	105	106	1	0.10	45	0.03	49	41
17ACC0088	106	107	1	0.02	9	0.01	11	35
17ACC0088	107	111	4	0.05	82	0.07	10	39
17ACC0088	111	112	1	0.01	607	0.28	12	41
17ACC0088	112	113	1	0.32	50	0.06	10	25
17ACC0088	113	114	1	0.09	61	0.06	8	23
17ACC0088	114	115	1	0.02	15	0.01	7	23
17ACC0088	115	119	4	0.37	51	0.21	13	36
17ACC0088	119	120	1	2.53	115	0.77	5	54
17ACC0088	120	121	1	0.12	45	0.03	5	42
17ACC0088	121	122	1	0.02	24	0.02	6	35
17ACC0088	122	123 127	1 4	0.43 0.20	130 39	0.07 0.03	4 5	49 40
17ACC0088 17ACC0088	123 127	127	4	0.20	39 31	0.03	5	40 25
17ACC0088 17ACC0088	127	131	4	0.00	51	0.02	7	48
17ACC0088	135	135	4	0.00	55	0.03	93	48
17ACC0088	139	133	1	0.01	143	0.07	290	55
17ACC0088	140	141	1	1.64	8,650	4.43	28	153
17ACC0088	141	142	1	0.18	936	0.37	186	50
17ACC0088	142	143	1	0.07	538	0.23	13	44
17ACC0088	143	144	1	0.50	2,140	0.97	23	66
17ACC0088	144	145	1	0.00	145	0.05	2	66
17ACC0088	145	146	1	0.17	1,450	0.66	3	76
17ACC0088	146	147	1	0.40	896	0.40	5	66
17ACC0088	147	148	1	0.01	128	0.05	7	58
17ACC0088	148	149	1	0.01	157	0.07	26	42
17ACC0088	149	150	1	0.01	92	0.08	7	58
17ACC0088	150	151	1	0.02	90	0.05	8	60
17ACC0088	151	152	1	0.08	257	0.09	6	50
17ACC0088	152	153	1	0.20	788	0.32	530	55
17ACC0088	153	154	1	0.04	94	0.05	202	52
17ACC0088	154	155	1	0.09	1,150	0.44	71	157
17ACC0088	155	156	1	0.03	337	0.14	24	51
17ACC0088	156	157	1	0.13	230	0.13	41	60
17ACC0088	157	158	1	0.03	139	0.07	34	45
17ACC0088	158	159	1	0.03	227 424	0.13	22	58 146
17ACC0088	159 160	160 161	1	0.06		0.25	17 6	146 126
17ACC0088 17ACC0088	160 161	161 162	1	0.25 0.35	1,510 979	0.84 0.53	6 10	126 58
17ACC0088 17ACC0088	161	162	1 1	0.35	979 480	0.53	10	58 61
17ACC0088 17ACC0088	162	163	1	2.49	2,800	1.74	250	94
17ACC0088 17ACC0088	164	164	1	0.30	2,800	0.23	230	55
17ACC0088 17ACC0088	164	165	1	0.50	155	0.23	64	61
17ACC0088	166	167	1	0.10	467	0.11	15	50
17ACC0088	167	171	4	0.01	163	0.05	3	64
17ACC0088	171	172	1	0.00	140	0.04	1	70
			-		2.0		-	

Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Tungsten (ppm)	Zinc (ppm)
17ACC0088	172	173	1	0.20	196	0.08	4	57
17ACC0088	173	174	1	0.03	421	0.27	20	40
17ACC0088	174	175	1	0.01	217	0.21	8	29
17ACC0088 17ACC0088	175 176	176 177	1 1	0.21 0.17	1,800 1,355	1.16 0.86	17 26	83 58
17ACC0088 17ACC0088	170	177	1	0.17	3,630	2.29	20 15	113
17ACC0088	178	179	1	0.04	925	0.57	45	47
17ACC0088	179	180	1	0.01	582	0.37	12	35
17ACC0088	180	181	1	0.01	147	0.10	6	37
17ACC0088	181	182	1	0.18	336	0.24	10	43
17ACC0088	182	183	1	0.82	3,490	2.16	24	66
17ACC0088	183	184	1	0.28	853	0.59	21	28
17ACC0088	184	185	1	0.07	580	0.33	10	32
17ACC0088	185	186	1	0.01	167	0.12	11	26
17ACC0088	186	187	1	0.63	1,460	0.93	118	60
17ACC0088	187	188	1	0.20	742	0.42	211	51
17ACC0088	188	189	1	0.01	105	0.04	13	35
17ACC0088	189	190	1	0.02	97	0.06	21	40
17ACC0088	190	191	1	0.62	2,560	1.22	21	74
17ACC0088 17ACC0088	191 192	192 193	1 1	0.80 0.02	180 166	0.21 0.08	8 25	78 41
17ACC0088 17ACC0088	192	195	1	0.02	1,755	0.08	55	41 47
17ACC0088	194	194	1	0.05	2,140	0.95	1,980	69
17ACC0088	195	196	1	0.19	1,600	0.61	96	55
17ACC0088	196	197	1	0.02	215	0.09	26	40
17ACC0088	197	198	1	0.02	385	0.15	30	35
17ACC0088	198	199	1	0.01	110	0.03	69	31
17ACC0088	199	200	1	0.00	75	0.02	44	31
17ACC0088	200	201	1	0.38	1,585	0.65	38	47
17ACC0088	201	202	1	0.66	1,700	0.75	33	59
17ACC0088	202	203	1	0.32	842	0.43	16	31
17ACC0088	203	204	1	0.86	2,050	1.05	24	52
17ACC0088	204	205	1	0.13	495	0.36	10	37
17ACC0088	205	206	1	0.23	501	0.24	70	63
17ACC0088	206	207	1	0.14	227	0.12	8	53
17ACC0088	207	208 209	1 1	0.46	625	0.35	14	52
17ACC0088 17ACC0088	208 209	209	1	0.08 0.15	4,880 2,880	2.04 1.05	31 16	88 51
17ACC0088	210	210	1	0.15	2,880	0.14	21	35
17ACC0088	210	212	1	0.01	80	0.04	17	44
17ACC0088	212	213	1	0.00	195	0.05	31	47
17ACC0088	213	214	1	1.13	567	0.36	14	55
17ACC0088	214	215	1	0.31	1,935	0.89	43	50
17ACC0088	215	216	1	1.88	3,740	1.93	1,640	93
17ACC0088	216	217	1	0.09	437	0.13	90	58
17ACC0088	217	218	1	0.10	372	0.13	52	50
17ACC0088	218	219	1	0.07	222	0.10	36	62
17ACC0088	219	220	1	0.28	724	0.25	1,890	87
17ACC0088	220	221	1	0.02	161	0.05	510	62
17ACC0088	221	222	1	0.01	84 124	0.04	33	45
17ACC0088 17ACC0088	222 223	223 227	1 4	0.03 0.01	134 101	0.05 0.03	61 11	30 45
17ACC0088 17ACC0088	223	227	4 1	0.01	1,075	0.03	8	45 73
17ACC0088 17ACC0088	227	228	1	0.21	230	0.48	58	40
17ACC0088	228	229	1	0.07	206	0.08	13	36
17ACC0088	230	230	1	0.00	32	0.01	6	34
17ACC0088	231	232	1	0.03	422	0.17	13	22
17ACC0088	232	233	1	0.11	1,445	0.60	10	32
17ACC0088	233	234	1	0.02	115	0.04	202	51
17ACC0088	234	235	1	2.72	4,030	2.62	18	83
17ACC0088	235	236	1	0.42	1,400	0.69	13	70
17ACC0088	236	237	1	0.07	810	0.50	43	58
17ACC0088	237	238	1	0.02	71	0.27	11	51
17ACC0088	238	239	1	0.04	97	0.05	8	59
17ACC0088	239	240	1	0.10	564	0.26	141	27
17ACC0088	240	241	1	0.42	527	0.96	12	11 25
17ACC0088	241	242	1	2.00	1,465	1.25	25	35
17ACC0088 17ACC0088	242 243	243 244	1 1	3.00 1.62	7,670 4,220	3.69 2.19	25 60	121 89
17ACC0088 17ACC0088	245	244	1	0.47	4,220	0.54	260	43
17 400000	277	273	1	0.47	1,000	0.04	200	40

174000000 245 246 1	
	15 339 0.16 19 37
17ACC0088 246 247 1 0.1	
17ACC0088 247 251 4 0.1 17ACC0088 251 252 1 0.1	
17ACC0088 251 252 1 0.1 17ACC0088 252 253 1 0.1	
17ACC0088 253 254 1 0	
17ACC0088 254 255 1 0.	
17ACC0088 255 256 1 0.	19 741 0.39 980 47
17ACC0088 256 257 1 0.1	572,0501.0021073
17ACC0088 257 258 1 0.0	
17ACC0088 258 259 1 0.0	
17ACC0088 259 260 1 0.	
17ACC0088 260 261 1 0.1 17ACC0088 261 262 1 0.1	
17ACC0088 261 262 1 0.1 17ACC0088 262 263 1 0.1	
17ACC0088 263 264 1 0.	
17ACC0088 264 265 1 0.	
17ACC0088 265 266 1 12	20 6,910 3.14 2,310 79
17ACC0088 266 267 1 1.4	40 1,105 0.52 540 55
17ACC0088 267 268 1 0.	
17ACC0088 268 269 1 0	
17ACC0088 269 270 1 0.0	
17ACC0088 270 271 1 0. 17ACC0088 271 272 1 0.	
17ACC0088 271 272 1 0. 17ACC0088 272 273 1 0.	
17ACC0088 273 274 1 0.	
17ACC0088 274 275 1 1.	
17ACC0088 275 276 1 0	
17ACC0088 276 277 1 0.	L5 740 0.40 340 63
17ACC0088 277 278 1 0	23 1,050 0.55 114 82
17ACC0088 278 279 1 0.	
17ACC0088 279 280 1 0.	
17ACC0088 280 281 1 0.1 17ACC0088 281 282 1 0.1	
17ACC0088 281 282 1 0.1 17ACC0088 282 283 1 0.1	
17ACC0088 282 283 1 0.1 17ACC0088 283 284 1 0.1	
17ACC0088 284 285 1 0.	
17ACC0088 285 286 1 0.	
17ACC0088 286 287 1 0.	04 76 0.04 23 45
17ACC0088 287 288 1 0.0	00 34 0.02 12 32
17ACC0088 288 289 1 0.0	
17ACC0088 289 290 1 0.1	
17ACC0088 290 291 1 0	
1/ACC0088 291 295 4 0.1 17ACC0088 295 296 1 0.1	
17ACC0088 296 297 1 0.	
17ACC0088 297 298 1 0.	
17ACC0088 298 299 1 0.	
17ACC0088 299 300 1 0.	13 1,080 0.30 26 42
17ACC0088 300 301 1 0	
17ACC0088 301 302 1 0.	
17ACC0088 302 303 1 1.	
17ACC0088 303 307 4 0.1 17ACC0088 307 308 1 0.1	
17ACC0088 307 308 1 0.1 17ACC0088 308 309 1 0.1	
17ACC0088 309 310 1 0.1	
17ACC0088 310 311 1 0.	
17ACC0088 311 312 1 0.	
17ACC0089 54 55 1 0.4	06 204 0.15 85 52
17ACC0089 58 59 1 0.	
17ACC0089 59 60 1 0.	
17ACC0089 60 61 1 0.	
17ACC0089 61 62 1 0.	
17ACC0089 62 63 1 0.1 17ACC0089 67 68 1 0.1	
17ACC0089 67 68 1 0.0 17ACC0089 68 69 1 0.0	
17ACC0089 69 70 1 0.	
17ACC0089 99 100 1 0.	
17ACC0089 100 101 1 0.	
17ACC0089 113 114 1 0.	03 467 0.08 6 37

Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Tungsten (ppm)	Zinc (ppm)
17ACC0089	117	121	4	0.00	19	0.02	100	203
17ACC0089	132	133	1	0.02	459	0.10	13	70
17ACC0089	146	147	1	0.14	7	0.02	4	44
17ACC0089	148	149	1	0.01	201	0.04	4	40
17ACC0089 17ACC0089	169	170 171	1	0.00 0.00	62 70	0.13 0.06	8 5	408
17ACC0089 17ACC0089	170 207	208	1 1	0.00	70 64	0.08	12	274 782
17ACC0089	207	208	1	0.02	23	0.03	4	352
17ACC0089	209	210	1	0.00	12	0.07	9	651
17ACC0089	211	212	1	0.10	138	0.05	193	93
17ACC0089	216	217	1	0.00	31	0.04	4	234
17ACC0089	241	242	1	0.00	37	0.15	5	499
17ACC0089	250	251	1	0.04	219	0.06	5	38
17ACC0089	254	255	1	0.26	1,730	0.36	740	133
17ACC0089	255	256	1	0.09	938	0.13	26	156
17ACC0089	256	257	1	0.06	721	0.09	11	146
17ACC0089	257	258	1	0.03	300	0.05	8	153
17ACC0089	258	259	1	0.14	1,160	0.16	110	166
17ACC0089	259	260	1	0.05	965	0.16	28	144
17ACC0089	260	261	1	0.01	332	0.10	7	120
17ACC0089	261	262	1	0.01	220	0.06	5	106
17ACC0090	65	66	1	0.00	233	0.10	6	146
17ACC0090	92	96	4	0.05	273	0.06	8	61 122
17ACC0090 17ACC0090	96 97	97 98	1 1	0.17 0.22	8 23	0.04 0.04	11 330	133 45
17ACC0090 17ACC0090	103	98 104	1	0.22	386	0.04	330 9	45 56
17ACC0090	105	104	1	0.03	16	0.17	240	47
17ACC0090	113	100	1	0.01	320	0.02	32	59
17ACC0090	174	175	1	0.00	18	0.03	5	216
17ACC0090	175	176	1	0.00	117	0.08	4	268
17ACC0090	176	177	1	0.00	65	0.08	4	262
17ACC0090	191	192	1	0.05	77	0.06	56	396
17ACC0090	192	193	1	0.01	79	0.32	6	1,945
17ACC0090	193	194	1	0.00	99	0.29	4	855
17ACC0090	194	195	1	0.01	57	0.06	6	254
17ACC0090	223	224	1	0.01	74	0.05	4	238
17ACC0090	241	242	1	0.00	7	0.01	4	239
17ACC0091	51	52	1	0.00	10	0.12	67	359
17ACC0091	52	53	1	0.00	9	0.08	91	1,160
17ACC0091	53	54	1	0.00	4	0.04	120	553
17ACC0091 17ACC0091	54 55	55 56	1 1	0.00 0.00	10 3	0.03 0.02	99 194	383 409
17ACC0091	55	60	4	0.00	23	0.02	194	351
17ACC0091	276	280	4	0.12	62	0.04	8	90
17ACC0092	33	34	1	0.00	625	0.01	2	238
17ACC0092	34	35	1	0.00	1,440	0.02	4	294
17ACC0092	35	36	1	0.01	1,185	0.04	9	268
17ACC0092	36	37	1	0.01	525	0.02	2	251
17ACC0092	37	38	1	0.01	729	0.04	2	188
17ACC0092	38	39	1	0.00	403	0.02	2	136
17ACC0092	41	42	1	0.00	273	0.03	2	140
17ACC0092	42	43	1	0.00	327	0.04	2	180
17ACC0092	43	44	1	0.00	224	0.02	1	129
17ACC0092	44	45	1	0.00	206	0.09	2	152
17ACC0092	45	46	1	0.00	211	0.03	1	132
17ACC0092 17ACC0092	46 47	47 48	1	0.00 0.00	214 286	0.03 0.03	2 2	144 156
17ACC0092 17ACC0092	50	48 51	1 1	0.00	280	0.03	2	191
17ACC0092	51	52	1	0.00	232	0.05	1	182
17ACC0092	64	65	1	0.00	252	0.05	2	93
17ACC0092	83	84	1	1.06	10,300	4.97	6	75
17ACC0092	84	85	1	0.32	4,450	1.04	7	46
17ACC0092	85	86	1	0.01	337	0.08	5	36
17ACC0092	91	92	1	0.01	1,370	0.16	2	14
17ACC0092	92	93	1	0.01	598	0.06	3	13
17ACC0092	93	94	1	0.00	450	0.07	3	37
17ACC0092	94	95	1	0.00	279	0.16	3	142
17ACC0092	95	96	1	0.00	430	0.05	4	32
17ACC0092	96	97	1	0.00	301	0.04	3	49
17ACC0092	112	113	1	0.00	830	0.26	5	21

Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Tungsten (ppm)	Zinc (ppm)
17ACC0093	35	36	1	0.00	68	0.02	159	34
17ACC0093	36	37	1	0.00	180	0.02	170	78
17ACC0093	38	39	1	0.02	243	0.21	47	213
17ACC0093	39	40	1	0.18	314	0.05	124	168
17ACC0093	40	41	1	0.05	204	0.03	217	258
17ACC0093	41	42	1	0.05	178	0.01	250	353
17ACC0093	44	45	1	0.07	264	0.03	109	102
17ACC0093	46	47	1	0.18	25	0.02	11	15
17ACC0093	59	60	1	0.00	4	0.01	2	204
17ACC0093	69 70	70	1	0.01	65	0.03	100	202
17ACC0093	70	71	1	0.00	37	0.01	1,170	249
17ACC0093	71	72	1	0.00	6	0.01	52	202
17ACC0093	73	74	1	0.00	3	0.02	14	202
17ACC0093	108	109	1 1	0.00	292	0.08	4 3	89 100
17ACC0093 17ACC0093	132 133	133 134	1	0.00 0.00	201 232	0.04 0.04	3	109 120
17ACC0093 17ACC0093	135	134	1	0.00	232	0.04	2	120
17ACC0093 17ACC0093	134	135	1	0.00	220	0.04	2	119
17ACC0093	135	138	1	0.00	497	0.05	4	141
17ACC0093	137	138	1	0.10	1,370	0.03	110	94
17ACC0093	138	139	1	0.10	1,370	0.12	70	189
17ACC0093	139	140	1	0.00	217	0.12	9	135
17ACC0093	140	141	1	0.00	217	0.05	5	137
17ACC0093	141	142	1	0.00	314	0.05	5	130
17ACC0093	142	145	1	0.00	319	0.06	4	128
17ACC0093	145	171	1	0.00	258	0.26	2	88
17ACC0094	44	45	1	0.00	230	0.23	15	66
17ACC0094	45	46	1	0.01	255	0.06	17	76
17ACC0094	46	47	1	0.00	280	0.07	9	111
17ACC0094	47	48	1	0.00	323	0.17	6	166
17ACC0094	48	49	1	0.01	432	0.18	20	184
17ACC0094	49	50	1	0.00	834	0.16	28	407
17ACC0094	50	51	1	0.00	180	0.09	59	375
17ACC0094	51	52	1	0.00	78	0.09	44	405
17ACC0094	52	53	1	0.00	55	0.07	58	401
17ACC0094	53	54	1	0.00	170	0.05	29	326
17ACC0094	54	55	1	0.00	429	0.13	43	246
17ACC0094	55	56	1	0.01	360	0.05	30	68
17ACC0094	56	57	1	0.03	475	0.05	45	65
17ACC0094	57	58	1	0.15	624	0.08	32	60
17ACC0094	58	59	1	0.02	513	0.07	23	44
17ACC0094	59	60	1	0.00	367	0.04	16	35
17ACC0094	60	61	1	0.02	452	0.09	38	79
17ACC0094	62	63	1	0.01	1,395	0.09	18	75
17ACC0094	63	64	1	0.02	836	0.10	9	58
17ACC0094	64	65	1	0.02	670	0.08	4	121
17ACC0094	65	66	1	0.00	245	0.06	5	55
17ACC0094	66	67	1	0.00	306	0.15	4	91
17ACC0094	99	100	1	0.00	206	0.04	3	128
17ACC0095	53	54	1	0.08	255	0.06	8	80
17ACC0095	55	56	1	0.01	424	0.07	15	297
17ACC0095	56	57	1	0.03	551	0.09	4	381
17ACC0095	57	58	1	0.02	318	0.05	4	294
17ACC0095	59	60	1	0.00	171	0.08	230	108
17ACC0095	81	82	1	0.01	268	0.21	2	111
17ACC0095	82	83	1	0.01	254	0.23	4	113
17ACC0096	49	50	1	0.00	242	0.08	7	186
17ACC0096	50	51	1	0.01	722	0.12	2	481
17ACC0096	51	52	1	0.01	215	0.06	2	237
17ACC0096	52	53	1	0.00	144	0.05	1	229
17ACC0096	54	55	1	0.00	260	0.10	2	212
17ACC0096	55	56	1	0.00	212	0.08	1	161
17ACC0096	57	58	1	0.01	372	0.06	3	140
17ACC0096	59 62	60 62	1	0.00	214	0.08	3	145 142
17ACC0096	62	63	1	0.00	214	0.08	1	142
17ACC0096	63	64	1	0.01	235	0.08	1	147

Table 2b: Citadel 2017 Phase 1 Air Core Drill Hole Gold-Copper-Silver-Zinc Key Assay Results (i.e. \geq 1.0m with Au \geq 0.1 g/t and/or Cu \geq 200 ppm and/or Ag \geq 0.5 g/t and/or Zn \geq 200 ppm)

Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Zinc (ppm)
17ACA0001	41	42	1	0.00	2.76	0.67	3.5
17ACA0001	42	43	1	0.00	4.44	0.99	21
17ACA0001	43	44	1	0.03	6.69	3.55	24.5
17ACA0001	44	45	1	0.00	4.6	0.59	8
17ACA0004	47	48	1	0.01	96.6	0.56	74.4
17ACA0005	45	46	1	0.00	41	0.69	30.5
17ACA0005 17ACA0005	47 51	48 52	1 1	0.00 0.00	20.6 124	1.16 0.62	8.6 66.1
17ACA0005	52	53	1	0.00	109	0.62	72.1
17ACA0006	56	57	1	0.00	28.9	0.77	277
17ACA0006	57	58	1	0.00	17.05	0.50	251
17ACA0007	47	48	1	0.00	99.7	0.03	200
17ACA0008	55	56	1	0.00	261	0.08	163
17ACA0008	56	57	1	0.00	269	0.05	112
17ACA0008	57	58	1	0.01	289	0.07	89.4
17ACA0008	58	59	1	0.00	273	0.07	80.8
17ACA0012	43	44	1	0.00	6.71	0.18	728
17ACA0012	51	52	1	0.05	67.1	0.13	216
17ACA0018	53	54	1	0.01	266	0.29	294
17ACA0018	54	55	1	0.07	333	0.68	372
17ACA0018	55 56	56 57	1 1	0.03 0.02	280 107.5	0.31 0.72	309 215
17ACA0018 17ACA0019	36	37	1	0.02	24.2	3.25	215
17ACA0015	29	30	1	0.00	9.18	0.54	6
17ACA0026	28	29	1	0.01	12.9	4.72	10.7
17ACA0026	29	30	1	0.00	4.17	0.84	4
17ACA0027	32	33	1	0.00	12.15	1.06	10.7
17ACA0028	45	46	1	0.01	497	0.22	109.5
17ACA0028	46	47	1	0.03	503	0.07	203
17ACA0028	47	48	1	0.00	616	0.07	352
17ACA0028	48	49	1	0.00	172.5	0.06	417
17ACA0028	49	50	1	0.00	18.95	0.02	509
17ACA0028	50	51	1	0.00	79.8	0.06	442
17ACA0028	51 52	52 53	1 1	0.01	77.1 202	0.05	321
17ACA0028 17ACA0028	52	53 54	1	0.01 0.03	202 197	0.09 0.11	332 345
17ACA0028	54	55	1	0.00	93.4	0.11	298
17ACA0028	55	56	1	0.03	274	0.13	224
17ACA0028	56	57	1	0.00	566	0.08	109
17ACA0028	57	58	1	0.00	239	0.04	50.3
17ACA0028	58	59	1	0.00	604	0.19	97.2
17ACA0028	59	60	1	0.02	557	0.09	76.6
17ACA0028	60	61	1	0.00	307	0.07	39.4
17ACA0028	61	62	1	0.00	393	0.08	61.3
17ACA0030	32	33	1	0.00	248	0.04	209
17ACA0030	35	36	1	0.00	199	0.06	208
17ACA0030	36	37	1	0.00	195	0.05	217
17ACA0030 17ACA0030	37 38	38 39	1 1	0.00 0.00	183 41.2	0.05 0.26	233 235
17ACA0030	39	40	1	0.00	41.2	0.20	255
17ACA0032	31	32	1	0.00	215	0.01	90.8
17ACA0032	32	33	1	0.01	213	0.03	135.5
17ACA0032	34	35	1	0.00	239	0.03	152.5
17ACA0032	35	36	1	0.00	243	0.04	142.5
17ACA0033	23	24	1	0.00	15	5.14	11.4
17ACA0033	24	25	1	0.00	10.05	0.55	14.9
17ACA0033	25	26	1	0.00	5.89	2.17	7.6
17ACA0038	35	36	1	0.00	395	0.04	44.3
17ACA0038	36	37	1	0.00	381	0.04	48.8
17ACA0038	37	38	1	0.00	265	0.04	42.5
17ACA0038	44 27	45	1	0.00	217	0.14	37.5
17ACA0039 17ACA0039	37 38	38 39	1 1	0.00 0.02	246 529	0.06 0.10	438 521
17ACA0039	39	40	1	0.02	969	0.10	574
17ACA0039	40	40	1	0.20	567	0.12	325
17ACA0039	41	42	1	0.05	271	0.54	90.7

17ACA0039 44 45 1 0.45 1915 0.21 1315 17ACA004 35 36 1 0.00 341 0.08 56.4 17ACA004 49 50 1 0.00 356 0.09 822.5 17ACA0044 51 52 1 0.00 358 0.05 147 17ACA0046 28 29 1 0.00 6.88 0.66 177 17ACA0047 22 33 1 0.00 10.85 0.69 56 17ACA0047 33 34 1 0.00 16.35 1.52 46 17ACA0047 34 35 1 0.00 16.35 1.52 46 17ACA0052 44 45 1 0.00 12.3 0.57 9.8 17ACA0052 45 47 1 0.00 7.2 0.56 32.3 17ACA0052 53 54 1 0.00 7.2 0.56 32.4 17ACA0057 55 57 1 0.	Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Zinc (ppm)
17ACA0044 48 49 1 0.00 341 0.08 56.84 17ACA0044 50 51 1 0.00 326 0.09 822. 17ACA0044 52 29 1 0.00 59 0.05 1.07 17ACA0047 23 33 1 0.00 1.09 0.69 56 17ACA0047 33 34 1 0.00 1.09 0.51 52 17ACA0047 33 34 1 0.00 1.03 0.53 6.1 17ACA0047 33 34 1 0.00 1.03 0.57 52 17ACA0051 64 65 1 0.00 1.21 0.67 92 17ACA0052 44 45 1 0.00 7.21 0.56 32.3 17ACA0052 48 49 1 0.00 7.21 0.59 36.1 17ACA0052 53 54 1 0.00 7.21 0.59 36.1 17ACA0057 55 57 1 0.								
17ACA0044 49 50 1 0.00 367 0.05 184 17ACA0044 51 52 1 0.00 359 0.05 147 17ACA0046 28 29 1 0.00 5.98 0.98 6.66 17ACA0047 22 33 1 0.00 1.61 0.93 4.11 17ACA0047 33 34 1 0.00 1.03 0.53 6.61 17ACA0047 34 35 1 0.00 6.7 0.05 1.21 17ACA0051 6.4 6.5 1 0.00 1.23 0.57 9.8 17ACA0052 44 45 1 0.00 7.2 0.50 5.16 17ACA0052 45 44 1 0.00 7.2 0.50 5.16 17ACA052 48 49 1 0.00 7.2 0.50 5.16 17ACA057 58 59 1 0.00								
17ACA0044 50 51 1 0.00 326 0.09 R22 17ACA0046 28 29 1 0.00 539 0.05 147 17ACA0047 32 33 1 0.00 0.195 0.69 56 17ACA0047 32 33 1 0.00 10.95 0.69 56 17ACA0047 33 34 1 0.00 9.99 0.51 52 17ACA0047 34 35 1 0.00 16.35 152 16.2 17ACA0051 64 65 1 0.00 12.1 0.67 9.2 17ACA0052 45 46 1 0.00 12.1 0.67 9.2 17ACA0052 48 49 1 0.00 7.0 0.56 23.3 17ACA0052 53 54 1 0.00 7.21 0.98 3.63 17ACA0057 55 57 1 0.00 7.23 0.53 1.61 17ACA0057 58 59 1 0								
17ACA004 51 52 1 0.00 359 0.05 147 17ACA0047 23 30 1 0.00 5.98 0.98 6.66 17ACA0047 32 33 1 0.00 10.95 0.69 5.66 17ACA0047 34 35 1 0.00 67 0.05 217 17ACA0047 34 35 1 0.00 67 0.05 217 17ACA0051 64 65 1 0.00 12.3 0.57 9.8 17ACA0052 44 45 1 0.00 7.2 0.50 5.23 17ACA0052 45 46 1 0.00 7.2 0.50 5.23 17ACA0052 50 51 1 0.00 7.2 0.50 5.16 17ACA0057 58 59 1 0.00 7.2 0.59 1.61 17ACA0057 58 59 1 0.00								
17ACA0047 29 30 1 0.00 6.1 0.03 4.1 17ACA0047 32 33 1 0.00 10.8 0.53 6.1 17ACA0047 34 35 1 0.00 12.8 0.53 5.2 17ACA0048 50 51 1 0.00 12.3 0.57 9.2 17ACA0052 44 45 1 0.00 12.3 0.57 9.8 17ACA0052 46 47 1 0.00 7.00 0.84 0.64 1.2 17ACA0052 48 49 1 0.00 7.02 0.56 52.3 17ACA0052 53 54 1 0.00 7.2 0.58 61.1 17ACA0057 56 57 1 0.00 7.3 0.33 6.1 17ACA0057 58 59 1 0.00 13.5 0.17 232 17ACA0057 58 59 1 0.00 13.9 0.8 271 17ACA0057 64 65								
17ACA0047 32 33 1 0.00 10.95 0.69 5.66 17ACA0047 34 35 1 0.00 10.95 0.51 5.2 17ACA0047 34 35 1 0.00 16.35 1.52 17ACA0051 64 65 1 0.00 12.1 0.67 9.2 17ACA0052 44 45 1 0.00 12.3 0.57 9.8 17ACA0052 46 47 1 0.00 7.2 0.56 32.3 17ACA0052 50 51 1 0.00 7.2 0.56 51.2 17ACA0057 56 57 1 0.00 7.21 0.58 1.61 17ACA0057 58 59 1 0.00 7.21 0.50 3.7.8 17ACA0057 58 59 1 0.00 7.25 0.10 125 17ACA0057 61 62 1 0.03 7.11	17ACA0046	28	29	1		5.98	0.98	6.6
17ACA0047 33 34 1 0.00 10.8 0.53 6.1 17ACA0048 50 51 1 0.00 67 0.05 217 17ACA0051 64 65 1 0.00 12.1 0.67 9.2 17ACA0052 44 445 1 0.00 12.3 0.57 9.8 17ACA052 46 47 1 0.00 7.0 0.8 8.8.3 17ACA052 48 49 1 0.00 7.2 0.56 51.6 17ACA052 53 54 1 0.00 7.21 0.98 37.8 17ACA057 56 57 1 0.00 17.21 0.98 37.8 17ACA057 58 59 1 0.00 18.25 0.40 203 17ACA057 58 59 1 0.00 13.25 0.41 217 17ACA057 64 65 1 0.03 7.94 0.43 217 17ACA057 64 65 1 0.00<								
17ACA0047 34 35 1 0.00 9.99 0.51 5.2 17ACA0051 64 65 1 0.00 16.35 1.52 46.2 17ACA0052 44 45 1 0.00 12.1 0.67 9.2 17ACA0052 45 46 1 0.00 12.3 0.57 9.8 17ACA0052 45 46 1 0.00 7.2 0.56 32.3 17ACA0052 50 51 1 0.00 7.2 0.56 32.3 17ACA0052 50 51 1 0.00 7.2 0.56 32.3 17ACA0057 56 57 1 0.00 8.3 0.51 6.1 17ACA0057 58 59 1 0.00 13.25 0.10 2.15 17ACA0057 59 6.0 1 0.00 13.25 0.10 2.15 17ACA0057 68 69 1 0.00 13.5 0.12 316 17ACA0057 68 69 1								
17ACA005 50 51 1 0.00 67 0.05 217 17ACA005 44 45 1 0.00 12.1 0.67 9.2 17ACA005 44 45 1 0.00 12.3 0.57 9.8 17ACA052 46 47 1 0.00 7.00 8.44 0.64 1.21 17ACA052 48 49 1 0.00 7.02 0.56 52.3 17ACA052 53 54 1 0.00 7.21 0.98 37.8 17ACA057 56 57 1 0.00 7.21 0.98 37.8 17ACA057 58 59 1 0.00 7.9 1.94 84 17ACA057 58 59 1 0.00 13.15 0.17 232 17ACA057 58 59 1 0.00 13.24 86.7 17ACA057 64 65 1 0.01 13.9 0.08 277 17ACA057 64 65 1 0.00								
17ACA0052 44 65 1 0.00 16.35 1.52 46.2 17ACA0052 45 46 1 0.00 12.1 0.67 9.2 17ACA0052 45 46 1 0.00 12.3 0.57 9.8 17ACA052 48 49 1 0.00 7.02 0.56 32.3 17ACA052 53 54 1 0.00 7.21 0.98 37.8 17ACA057 56 57 1 0.00 17.2 0.53 6.1 17ACA057 58 59 1 0.00 192.5 0.58 16.1 17ACA057 59 60 1 0.00 131.5 0.40 203 17ACA057 61 62 1 0.00 131.5 0.17 232 17ACA057 68 69 1 0.00 131.5 0.41 131 17ACA057 68 69 1 0.00 83.3 0.24 86.7 17ACA057 58 59 1								
17ACA0052 44 45 1 0.00 12.1 0.67 9.2 17ACA0052 45 46 1 0.00 12.3 0.57 9.8 17ACA0052 47 48 1 0.00 7.0 0.56 32.3 17ACA0052 50 51 1 0.00 7.2 0.50 51.6 17ACA0052 53 54 1 0.00 7.21 0.98 37.8 17ACA0057 56 57 1 0.00 19.25 0.53 66.1 17ACA0057 58 59 1 0.00 19.8 38.8 17 17ACA0057 58 59 1 0.00 12.5 0.10 212 17ACA0057 64 65 1 0.00 13.5 0.17 232 17ACA0057 68 69 1 0.00 43.5 1.24 86.7 17ACA0057 58 59 1 0.00 83.3 0.44 615 17ACA0061 57 58 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
17ACA0052 46 47 1 0.00 8.44 0.64 129 17ACA0052 48 49 1 0.00 7.02 0.56 32.3 17ACA0052 50 51 1 0.00 7.21 0.98 37.8 17ACA0057 56 57 1 0.00 8.73 0.53 6.61 17ACA0057 57 58 1 0.00 1925 0.58 16.1 17ACA0057 59 60 1 0.00 131.5 0.17 232 17ACA0057 64 65 1 0.00 131.5 0.10 215 17ACA0057 64 65 1 0.00 8.3 0.14 615 17ACA0057 68 69 1 0.00 8.3 0.14 615 17ACA0057 68 69 1 0.00 8.3 0.14 615 17ACA0051 57 58 1 0.00 8.3 0.26 394 17ACA0061 66 61 1 <td< td=""><td></td><td>44</td><td></td><td>1</td><td></td><td></td><td></td><td>9.2</td></td<>		44		1				9.2
17ACA0052 47 48 1 0.00 7.02 0.78 \$\$\$8.8 17ACA052 50 51 1 0.00 7.02 0.56 \$\$2.3 17ACA052 53 54 1 0.00 7.21 0.98 37.8 17ACA057 55 57 1 0.00 18.73 0.53 6.1 17ACA0057 58 59 1 0.00 19.25 0.58 16.1 17ACA0057 59 60 1 0.00 131.5 0.17 232 17ACA0057 64 65 1 0.00 13.5 0.40 203 17ACA0057 68 69 1 0.00 80.3 0.14 615 17ACA0057 68 69 1 0.00 83.3 0.26 394 17ACA0051 59 60 1 0.00 83.3 0.26 394 17ACA0061 59 60 1 0.00 180 0.16 299 17ACA0061 66 67 1	17ACA0052	45	46		0.00	12.3	0.57	9.8
17ACA0052 48 49 1 0.00 7.02 0.56 32.3 17ACA0052 53 54 1 0.00 7.21 0.98 37.8 17ACA0057 56 57 1 0.00 8.73 0.53 6.61 17ACA0057 57 58 1 0.00 1925 0.58 16.1 17ACA0057 56 60 1 0.00 131.5 0.17 232 17ACA0057 61 62 1 0.00 131.5 0.10 215 17ACA0057 64 65 1 0.00 87.9 0.19 473 17ACA0057 68 69 1 0.00 87.9 0.19 473 17ACA0051 58 59 1 0.00 87.9 0.19 473 17ACA0051 66 67 1 0.00 183.3 0.26 394 17ACA0051 66 67 1 0.00 183.3 0.26 394 17ACA0051 66 67 1								
17ACA0052 50 51 1 0.00 7.2 0.50 51.6 17ACA0057 56 57 1 0.00 7.21 0.98 37.8 17ACA0057 56 57 1 0.00 12.5 0.53 6.1 17ACA0057 58 59 1 0.00 79 1.94 84 17ACA0057 60 61 1 0.00 131.5 0.17 232 17ACA0057 60 65 1 0.03 79.8 0.08 277 17ACA0057 64 65 1 0.00 80.3 0.14 615 17ACA0061 57 58 1 0.00 80.3 0.14 615 17ACA0061 59 60 1 0.00 83.3 0.26 394 17ACA0061 61 62 1 0.00 83.3 0.26 394 17ACA0061 66 67 1 0.00 1.77 0.10 225 17ACA0062 59 60 1 0.								
17ACA0052 53 54 1 0.00 7.21 0.98 37.8 17ACA0057 56 57 1 0.00 8.73 0.53 6.1 17ACA0057 58 59 1 0.00 79 1.94 84 17ACA0057 59 60 1 0.00 182.5 0.40 203 17ACA0057 61 62 1 0.00 131.5 0.17 322 17ACA0057 64 65 1 0.00 43.5 1.24 86.7 17ACA0057 68 69 1 0.00 80.3 0.14 615 17ACA061 57 58 1 0.00 83.3 0.26 394 17ACA061 61 62 1 0.00 183 0.26 394 17ACA061 61 62 1 0.00 17.7 0.10 225 17ACA061 67 68 1 0.00 49.4 0.16 52 17ACA062 59 60 1 0.01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
17ACA0057 56 57 1 0.00 8.73 0.53 6.1 17ACA0057 58 59 1 0.00 19.25 0.58 16.1 17ACA0057 58 59 1 0.00 162.5 0.40 0.23 17ACA0057 60 61 1 0.00 122.5 0.10 2125 17ACA0057 64 65 1 0.03 79.8 0.08 277 17ACA0057 64 65 1 0.00 83.3 0.14 667 17ACA0057 68 69 1 0.00 87.9 0.19 473 17ACA0061 58 59 1 0.00 183.3 0.26 394 17ACA0061 60 61 1 0.00 183.3 0.16 299 17ACA0061 61 62 1 0.00 47.7 0.10 252 17ACA0061 66 67 1 0.00 47.4 1.01 17.4 1.45 17ACA0062 58 59								
17ACA0057 57 58 1 0.00 19.25 0.58 16.1 17ACA0057 58 59 1 0.00 79 1.94 84 17ACA0057 59 60 1 0.00 131.5 0.17 232 17ACA0057 61 62 1 0.00 132.5 0.10 232 17ACA0057 64 65 1 0.03 79.8 0.08 277 17ACA0061 57 58 1 0.00 83.3 0.14 615 17ACA0061 59 60 1 0.00 83.3 0.26 394 17ACA0061 61 62 1 0.00 108 0.16 299 17ACA0061 66 67 1 0.00 47.7 0.10 225 17ACA0061 66 67 1 0.00 1.83 1.61 82 17ACA0062 59 60 1 0.01 37.1 1.75 484 17ACA0062 61 62 1 0.								
17ACA0057 59 60 1 0.00 162.5 0.40 203 17ACA0057 60 61 1 0.00 131.5 0.17 232 17ACA0057 64 65 1 0.03 79.8 0.08 277 17ACA0057 68 69 1 0.00 83.5 1.24 86.7 17ACA0061 57 58 1 0.00 87.9 0.19 473 17ACA0061 59 60 1 0.00 109 0.12 316 17ACA0061 60 61 1 0.00 108 0.16 299 17ACA0061 66 67 1 0.00 10.85 1.61 822 17ACA0061 67 68 1 0.00 10.85 1.61 822 17ACA0062 58 59 1 0.01 17.1 1.87 252 17ACA0062 61 62 1 0.01 37.5 1.11 515 17ACA0062 62 63 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
17ACA0057 60 61 1 0.00 131.5 0.17 232 17ACA0057 64 65 1 0.00 122.5 0.10 215 17ACA0057 64 65 1 0.00 43.5 1.24 86.7 17ACA0051 58 59 1 0.00 80.3 0.14 615 17ACA0061 59 60 1 0.00 87.9 0.19 473 17ACA0061 61 62 1 0.00 108 0.16 299 17ACA0061 66 67 1 0.00 49.4 0.16 252 17ACA0061 66 67 1 0.00 10.85 1.61 82 17ACA0062 58 59 1 0.01 17.1 1.87 25.2 17ACA0062 61 62 1 0.01 37.1 1.75 48.4 17ACA0062 61 62 1 0.00 37.4 1.45 39.6 17ACA0062 61 62 1	17ACA0057	58	59	1	0.00	79		84
17ACA0057 61 62 1 0.00 122.5 0.10 215 17ACA0057 68 69 1 0.00 34.5 1.24 86.7 17ACA0057 68 69 1 0.00 80.3 0.14 615 17ACA0061 58 59 1 0.00 87.9 0.19 47.3 17ACA0061 60 61 1 0.00 10.8 0.16 299 17ACA0061 66 67 1 0.00 47.7 0.10 225 17ACA0061 66 67 1 0.00 47.7 0.10 225 17ACA0062 59 60 1 0.01 9.99 2.14 10.1 17ACA0062 61 62 1 0.01 37.5 1.11 51.5 17ACA0062 62 63 1 0.00 37.5 1.11 51.5 17ACA0062 63 64 1 0.00 37.5 1.19 29.1 17ACA0062 65 66 1		59	60	1	0.00		0.40	203
17ACA0057 64 65 1 0.03 79.8 0.08 277 17ACA0051 58 69 1 0.00 83.3 0.14 615 17ACA0061 58 59 1 0.00 87.9 0.19 473 17ACA0061 60 61 1 0.00 183.3 0.26 394 17ACA0061 61 62 1 0.00 108 0.16 299 17ACA0061 66 67 1 0.00 49.4 0.16 252 17ACA0061 66 67 1 0.00 49.4 0.16 252 17ACA0062 59 60 1 0.01 17.1 1.87 25.2 17ACA0062 61 62 1 0.01 37.1 1.75 48.4 17ACA0062 63 64 1 0.00 37.4 1.45 39.6 17ACA0062 63 64 1 0.00 14.4 1.29 61.3 17ACA0062 67 68 1 <								
17ACA0057 68 69 1 0.00 43.5 1.24 86.7 17ACA0061 57 58 1 0.00 80.3 0.14 615 17ACA0061 59 60 1 0.00 83.3 0.26 394 17ACA0061 60 61 1 0.00 109 0.12 316 17ACA0061 66 67 1 0.00 49.4 0.16 225 17ACA0061 66 67 1 0.00 49.4 0.16 252 17ACA0062 59 60 1 0.01 9.99 2.14 10.1 17ACA0062 61 61 1 0.01 37.5 1.11 51.5 17ACA0062 63 64 1 0.00 37.5 1.11 51.5 17ACA0062 63 64 1 0.00 37.4 1.45 39.6 17ACA0062 63 64 1 0.00 37.4 1.45 39.6 17ACA0062 67 68 1								
17ACA0061 57 58 1 0.00 80.3 0.14 615 17ACA0061 59 60 1 0.00 87.9 0.19 473 17ACA0061 60 61 1 0.00 80.3 0.26 394 17ACA0061 61 62 1 0.00 109 0.12 316 17ACA0061 66 67 1 0.00 47.7 0.10 225 17ACA0061 67 68 1 0.00 49.4 0.16 225 17ACA0062 59 60 1 0.01 9.9 2.14 10.1 17ACA0062 61 62 1 0.01 37.1 1.75 48.4 17ACA0062 61 62 1 0.00 37.4 1.45 39.6 17ACA0062 63 64 1 0.00 22.4 1.45 39.6 17ACA0062 67 68 1 0.00 27.4 0.64 54 17ACA0062 71 72 1								
17ACA0061 58 59 1 0.00 87.9 0.19 473 17ACA0061 59 60 1 0.00 83.3 0.26 394 17ACA0061 61 62 1 0.00 108 0.16 299 17ACA0061 66 67 1 0.00 49.4 0.16 252 17ACA0062 58 59 1 0.00 10.85 1.61 8.2 17ACA0062 60 61 1 0.01 7.1 1.87 25.2 17ACA0062 61 62 1 0.01 37.1 1.75 48.4 17ACA0062 62 63 1 0.00 19.05 1.19 29.1 17ACA0062 64 65 1 0.00 19.05 1.19 29.1 17ACA0062 64 65 1 0.00 19.05 1.89 36 17ACA0062 64 65 1 0.00 14.4 1.29 61.3 17ACA0062 70 71 1								
17ACA0061 59 60 1 0.00 83.3 0.26 394 17ACA0061 60 61 1 0.00 109 0.12 316 17ACA0061 66 67 1 0.00 47.7 0.10 225 17ACA0061 66 67 1 0.00 49.4 0.16 252 17ACA0062 58 59 1 0.01 9.9 2.14 10.1 17ACA0062 60 61 1 0.01 37.1 1.75 48.4 17ACA0062 61 62 1 0.00 19.05 1.19 29.1 17ACA0062 63 64 1 0.00 19.05 1.19 29.1 17ACA0062 63 64 1 0.00 14.4 1.29 61.3 17ACA0062 67 68 1 0.00 14.4 1.29 61.3 17ACA0062 67 68 1 0.00 27.6 1.07 112.5 17ACA0062 71 72 1								
17ACA0061 61 62 1 0.00 108 0.16 299 17ACA0061 66 67 1 0.00 47.7 0.10 225 17ACA0062 58 59 1 0.00 10.85 1.61 8.2 17ACA0062 59 60 1 0.01 9.99 2.14 10.1 17ACA0062 61 62 1 0.01 37.1 1.75 48.4 17ACA0062 63 64 1 0.00 37.5 1.11 51.5 17ACA0062 63 64 1 0.00 37.5 1.11 51.5 17ACA0062 63 64 1 0.00 31.4 1.29 61.3 17ACA0062 67 68 1 0.00 27.4 0.64 54 17ACA0062 70 71 1 0.00 84.6 0.96 194.5 17ACA0062 73 74 1 0.00 15 0.82 68.1 17ACA0062 75 76 1								
17ACA0061 66 67 1 0.00 47.7 0.10 225 17ACA0061 67 68 1 0.00 49.4 0.16 252 17ACA0062 58 59 1 0.00 10.85 1.61 8.2 17ACA0062 60 61 1 0.01 3.99 2.14 10.1 17ACA0062 61 62 1 0.01 37.1 1.75 48.4 17ACA0062 63 64 1 0.00 37.5 1.11 51.5 17ACA0062 63 64 1 0.00 19.05 1.19 29.1 17ACA0062 67 68 1 0.00 31.4 1.29 61.3 17ACA0062 67 68 1 0.00 27.4 0.64 54 17ACA0062 70 71 1 0.00 84.6 0.96 194.5 17ACA0062 71 72 1 0.00 84.6 0.96 194.5 17ACA0062 73 74 1	17ACA0061	60	61	1	0.00	109	0.12	316
17ACA0061 67 68 1 0.00 49.4 0.16 252 17ACA0062 58 59 1 0.00 10.85 1.61 8.2 17ACA0062 59 60 1 0.01 9.99 2.14 10.1 17ACA0062 61 62 1 0.01 37.1 1.75 48.4 17ACA0062 62 63 1 0.00 37.5 1.11 51.5 17ACA0062 64 65 1 0.00 19.05 1.19 29.1 17ACA0062 64 65 1 0.00 22.4 1.45 39.6 17ACA0062 65 66 1 0.00 19.05 0.89 36 17ACA0062 68 69 1 0.00 17.4 0.64 54 17ACA0062 70 71 1 0.00 86.8 0.55 208 17ACA0062 72 73 1 0.00 37.5 1.27 106.5 17ACA0062 76 77 1								
17ACA0062585910.0010.851.618.217ACA0062596010.019.992.1410.117ACA0062606110.0117.11.8725.217ACA0062616210.0037.51.1151.517ACA0062636410.0019.051.1929.117ACA0062646510.002.41.4539.617ACA0062656610.0031.41.2961.317ACA0062686910.0027.40.645417ACA0062707110.0084.60.96194.517ACA0062717210.0037.51.27106.517ACA0062717210.0037.51.27106.517ACA0062737410.0037.51.27106.517ACA0062747510.00150.8268.117ACA006276777810.00150.8268.717ACA0062777810.0013.30.5310.917ACA0062777810.0013.30.5310.917ACA0062798010.0031.50.1836617ACA0065585910.0116.51.3267.817ACA006559 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
17ACA0062596010.019.992.1410.117ACA0062606110.0117.11.8725.217ACA0062616210.0137.11.7548.417ACA0062636410.0037.51.1151.517ACA0062636410.0019.051.1929.117ACA0062646510.0031.41.2961.317ACA0062676810.0019.050.893617ACA0062676810.0027.40.645417ACA0062707110.0086.80.5520817ACA0062717210.0086.80.96194.517ACA0062727310.0037.51.27106.517ACA0062737410.00150.8268.117ACA0062767710.0016.51.3267.817ACA0062777810.0016.51.3267.817ACA0062777810.0031.50.1310.917ACA0065596010.005.790.698.717ACA0065585910.0035.00.4366.417ACA0065596010.012640.3931417ACA00655556 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
17ACA0062 60 61 1 0.01 17.1 1.87 25.2 17ACA0062 61 62 1 0.01 37.1 1.75 48.4 17ACA0062 62 63 1 0.00 37.5 1.11 51.5 17ACA0062 64 65 1 0.00 19.05 1.19 29.1 17ACA0062 64 65 1 0.00 31.4 1.29 61.3 17ACA0062 68 69 1 0.00 27.4 0.64 54 17ACA0062 70 71 1 0.00 86.8 0.55 208 17ACA0062 70 71 1 0.00 86.8 0.55 208 17ACA0062 71 72 1 0.00 84.6 0.96 194.5 17ACA0062 73 74 1 0.00 27.6 1.07 112.5 17ACA0062 77 78 1 0.00 15 0.82 68.1 17ACA0062 77 78 1								
17ACA0062616210.0137.11.7548.417ACA0062626310.0037.51.1151.517ACA0062636410.001.901.199.117ACA0062656610.0031.41.2961.317ACA0062676810.0019.050.893617ACA0062676810.0019.050.893617ACA0062707110.0084.60.96194.517ACA0062717210.0084.60.96194.517ACA0062717210.0037.51.27106.517ACA0062737410.00150.8268.117ACA0062747510.0016.51.3267.817ACA0062757610.0016.51.3267.817ACA0062777810.0016.51.3267.817ACA0062777810.0013.30.5310.917ACA0065585910.0031.51.3267.817ACA0065585910.0013.30.5310.917ACA0065585510.012640.3931417ACA0066545510.012640.3931417ACA00665960 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
17ACA0062636410.0019.051.1929.117ACA0062646510.0022.41.4539.617ACA0062656610.0031.41.2961.317ACA0062686910.0027.40.645417ACA0062707110.0086.80.5520817ACA0062707110.0084.60.96194.517ACA0062727310.0037.51.27106.517ACA0062737410.0027.61.07112.517ACA0062747510.00150.8268.117ACA0062757610.0016.51.3267.817ACA0062777810.0016.51.3267.817ACA0062777810.0013.30.5310.917ACA0062798010.0013.30.5310.917ACA0065585910.0031.50.1836617ACA0065535610.012640.3931417ACA0066545510.012010.4523917ACA006658596010.012640.3931417ACA006658596010.012450.3921717ACA006658								
17ACA0062646510.0022.41.4539.617ACA0062656610.0031.41.2961.317ACA0062676810.0019.050.893617ACA0062686910.0086.80.5520817ACA0062707110.0084.60.96194.517ACA0062727310.0037.51.27106.517ACA0062737410.0027.61.07112.517ACA0062737410.00150.8268.117ACA0062757610.0016.51.3267.817ACA0062767710.0016.51.3267.817ACA006276777810.0016.51.3267.817ACA0062798010.0020.50.6366.417ACA0065585910.0013.30.5310.917ACA0065536410.0041.90.5364.717ACA0065555610.0120.50.6364.717ACA0066555610.0120.50.4320.717ACA0066585910.0120.50.4320.717ACA006658596010.0120.50.4320.817ACA0066 </td <td>17ACA0062</td> <td>62</td> <td>63</td> <td>1</td> <td>0.00</td> <td>37.5</td> <td>1.11</td> <td>51.5</td>	17ACA0062	62	63	1	0.00	37.5	1.11	51.5
17ACA0062656610.0031.41.2961.317ACA0062676810.0019.050.893617ACA0062707110.0086.80.5520817ACA062707110.0086.60.96194.517ACA062727310.0037.51.27106.517ACA062737410.0027.61.07112.517ACA062747510.00150.8268.117ACA062767710.0016.51.3267.817ACA062767710.0016.51.3267.817ACA062767710.0016.51.3267.817ACA062798010.0020.50.6366.417ACA065585910.0031.30.5310.917ACA065585910.0031.50.1836617ACA066525310.0031.50.1836617ACA06654555610.012010.4523917ACA066585910.012010.4523917ACA066585910.012010.4523917ACA066575810.012010.4523917ACA06659601 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
17ACA0062676810.0019.050.893617ACA0062686910.0027.40.645417ACA0062707110.0086.80.96194.517ACA0062717210.0084.60.96194.517ACA0062727310.0037.51.27106.517ACA0062747510.0027.61.07112.517ACA0062747510.00150.8268.117ACA0062767710.0016.251.0672.317ACA0062767710.0016.51.3267.817ACA0062777810.0016.51.3267.817ACA0062798010.0020.50.6366.417ACA0065585910.0013.30.5310.917ACA0065585910.0031.50.4836617ACA0065535610.0120.56.5926.917ACA006654555610.0124.934.4417ACA0066585910.0124.934.4417ACA0066585910.0124.934.917ACA0066585910.0124.90.3622717ACA0066596010.01<								
17ACA0062686910.0027.40.645417ACA0062707110.0086.80.5520817ACA0062717210.0084.60.96194.517ACA0062727310.0037.51.27106.517ACA0062737410.0027.61.07112.517ACA0062747510.00150.8268.117ACA0062757610.0016.51.3267.817ACA0062767710.0016.51.3267.817ACA0062777810.0013.30.5310.917ACA0062798010.0020.50.6366.417ACA0065585910.0031.30.5310.917ACA0065596010.0031.50.1836617ACA0065535610.013150.1836617ACA006654555610.012010.4523917ACA0066575810.012010.4523917ACA0066585910.012450.3921717ACA0066585910.012450.3921717ACA0066585910.012450.3921717ACA00665859								
17ACA0062707110.0086.80.5520817ACA0062717210.0084.60.96194.517ACA0062727310.0037.51.27106.517ACA0062737410.0027.61.07112.517ACA0062747510.00150.8268.117ACA0062757610.0019.90.8869.917ACA0062767710.0016.51.3267.817ACA0062777810.0016.51.3267.817ACA0062798010.0020.50.6366.417ACA0065585910.0013.30.5310.917ACA0065585910.0031.50.1836.417ACA0065536410.00720.5626.917ACA0066525310.012640.3931417ACA0066555610.012640.3931417ACA0066555610.012640.3931417ACA0066585910.012450.3921717ACA0066596010.012450.3921717ACA0066596010.012570.19199.517ACA006661621 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
17ACA0062717210.0084.60.96194.517ACA0062727310.0037.51.27106.517ACA0062737410.0027.61.07112.517ACA0062747510.0019.90.8869.917ACA0062767710.0016.251.0672.317ACA006276777810.0016.51.3267.817ACA0062777810.0020.50.6366.417ACA0062798010.0020.50.6366.417ACA0065585910.003.30.5310.917ACA0065585910.0031.50.1836617ACA0065636410.00720.5626.917ACA0066525310.013150.1836617ACA0066545510.012640.3931417ACA0066585910.012640.3931417ACA0066585910.0124523920717ACA0066585910.012450.3921717ACA0066606110.012550.4422717ACA0066636410.002570.19199.517ACA00666364 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
17ACA0062727310.0037.51.27106.517ACA0062737410.0027.61.07112.517ACA0062747510.0019.90.8869.917ACA0062767710.0016.251.0672.317ACA0062767710.0016.51.3267.817ACA0062777810.0020.50.6366.417ACA0062798010.0020.50.6366.417ACA0065585910.003.30.5310.917ACA0065596010.005.790.698.717ACA0065636410.003150.1836617ACA0066525310.003150.1836617ACA0066545510.012010.5144117ACA0066585910.012010.4523917ACA0066585910.012010.4523917ACA0066596010.012450.3921717ACA0066616210.012570.19199.517ACA0066626310.012420.3622617ACA0066636410.002570.19199.517ACA006663641 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
17ACA0062747510.00150.8268.117ACA0062757610.0019.90.8869.917ACA0062767710.0016.251.0672.317ACA0062777810.0016.51.3267.817ACA0062798010.0020.50.6366.417ACA0065585910.0013.30.5310.917ACA0065596010.005.790.698.717ACA0065636410.00720.5626.917ACA0066525310.003150.1836617ACA0066545510.015060.5949517ACA0066565710.012640.3931417ACA0066585910.012010.4523917ACA0066585910.012450.3921717ACA0066606110.012350.3422717ACA0066616210.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226	17ACA0062	72	73			37.5		106.5
17ACA0062757610.0019.90.8869.917ACA0062767710.0016.251.0672.317ACA0062777810.0016.51.3267.817ACA0062798010.0020.50.6366.417ACA0065585910.0013.30.5310.917ACA0065596010.005.790.698.717ACA0065636410.0041.90.5364.717ACA0066525310.003150.1836617ACA0066545510.013150.1836617ACA0066555610.014900.5144117ACA0066575810.012640.3931417ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066606110.012450.3921717ACA0066626310.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0062767710.0016.251.0672.317ACA0062777810.0016.51.3267.817ACA0062798010.0020.50.6366.417ACA0065585910.0013.30.5310.917ACA0065596010.005.790.698.717ACA0065636410.0041.90.5364.717ACA0066525310.00720.5626.917ACA0066545510.013150.1836617ACA0066555610.015060.5949517ACA0066565710.012640.3931417ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066616210.012450.3921717ACA0066616210.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0062777810.0016.51.3267.817ACA0062798010.0020.50.6366.417ACA0065585910.0013.30.5310.917ACA0065596010.005.790.698.717ACA0065636410.0041.90.5364.717ACA0066525310.00720.5626.917ACA0066545510.013150.1836617ACA0066565710.015060.5949517ACA0066565710.014900.5144117ACA0066585910.012640.3931417ACA0066596010.012640.3921717ACA0066596010.012450.3921717ACA0066616210.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0062798010.0020.50.6366.417ACA0065585910.0013.30.5310.917ACA0065596010.005.790.698.717ACA0065636410.0041.90.5364.717ACA0066525310.00720.5626.917ACA0066545510.013150.1836617ACA0066555610.015060.5949517ACA0066565710.014900.5144117ACA0066575810.012640.3931417ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066616210.012350.3422717ACA0066626310.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0065585910.0013.30.5310.917ACA0065596010.005.790.698.717ACA0065636410.0041.90.5364.717ACA0066525310.00720.5626.917ACA0066545510.015060.5949517ACA0066565710.015060.5949517ACA0066565710.014900.5144117ACA0066585910.012640.3931417ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066616210.012450.3921717ACA0066616210.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0065596010.005.790.698.717ACA0065636410.0041.90.5364.717ACA0066525310.00720.5626.917ACA0066545510.003150.1836617ACA0066555610.015060.5949517ACA0066565710.014900.5144117ACA0066575810.012640.3931417ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066616210.012450.3921717ACA0066626310.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0066525310.00720.5626.917ACA0066545510.003150.1836617ACA0066555610.015060.5949517ACA0066565710.014900.5144117ACA0066575810.012640.3931417ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066606110.012450.3921717ACA0066616210.012350.3422717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0066545510.003150.1836617ACA0066555610.015060.5949517ACA0066565710.014900.5144117ACA0066575810.012640.3931417ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066606110.012450.3921717ACA0066616210.012350.3422717ACA0066626310.002570.19199.517ACA0066646510.012420.36226	17ACA0065	63	64	1	0.00	41.9	0.53	64.7
17ACA0066555610.015060.5949517ACA0066565710.014900.5144117ACA0066575810.012640.3931417ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066606110.012450.3921717ACA0066616210.012350.3422717ACA0066626310.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0066565710.014900.5144117ACA0066575810.012640.3931417ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066606110.012450.3921717ACA0066616210.012350.3422717ACA0066626310.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0066575810.012640.3931417ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066606110.012450.3921717ACA0066616210.012350.3422717ACA0066626310.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0066585910.012010.4523917ACA0066596010.01163.50.2320817ACA0066606110.012450.3921717ACA0066616210.012350.3422717ACA0066626310.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0066596010.01163.50.2320817ACA0066606110.012450.3921717ACA0066616210.012350.3422717ACA0066626310.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0066606110.012450.3921717ACA0066616210.012350.3422717ACA0066626310.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0066616210.012350.3422717ACA0066626310.012580.2922717ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0066636410.002570.19199.517ACA0066646510.012420.36226								
17ACA0066 64 65 1 0.01 242 0.36 226								
		05	00	T	0.00	210	0.20	210

Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Zinc (ppm)
17ACA0066	66	67	1	0.00	265	0.09	151.5
17ACA0068	44	45	1	0.00	13.45	1.83	8.2
17ACA0068	45	46	1	0.00	10.15	0.91	13.2
17ACA0068	46	47	1	0.00	13	1.27	48.8
17ACA0068	47	48	1	0.00	10.05	0.85	74.9
17ACA0068	48	49	1	0.00	17.65	1.06	66.9
17ACA0068	49	50	1	0.00	9	0.77	84.8
17ACA0068	50	51	1	0.00	7.59	0.59	87.7
17ACA0068	61	62	1	0.00	52.3	0.73	67.5
17ACA0068	64	65	1	0.00	37.1	0.69	53.6
17ACA0068	65	66	1	0.02	30.2	0.72	58.2
17ACA0068	69	70	1	0.01	20.6	0.52	40
17ACA0070	49	50	1	0.02	233	0.22	210
17ACA0070	50	51	1	0.01	330	0.20	251
17ACA0070	51	52	1	0.01	406	0.42	379
17ACA0070	52	53	1	0.01	189	0.19	408
17ACA0070	54	55	1	0.01	128	0.22	213
17ACA0070	55	56	1	0.00	134	0.20	223
17ACA0070	56	57	1	0.01	186.5	0.32	200
17ACA0070	57	58	1	0.01	203	0.21	202
17ACA0076	52	53	1	0.00	30.1	0.79	37.4
17ACA0076	55	56	1	0.00	154.5	0.67	217
17ACA0077	50	51	1	0.01	396	0.11	229
17ACA0077	51	52	1	0.03	999	0.17	809
17ACA0077	52	53	1	0.02	357	0.11	313
17ACA0077	53	54	1	0.01	272	0.08	427
17ACA0077	54	55	1	0.00	201	0.03	252
17ACA0077	55	56	1	0.00	333	0.05	156

Notes (Key Assay Result Tables above): The intervals/intersections have not been composited from individual assays as due to the reconnaissance geochemical nature of the 2017 Phase 1 air core and Phase 2 RC drill programmes varying sample lengths are present. The following selection criteria apply:

Interval Selection = Nominal cut-off grade scenarios:

- ≥ 0.1 g/t gold which also satisfy a minimum down-hole interval of 1.0m; or
- ≥ 200 ppm (or 0.02%) copper which also satisfy a minimum down-hole interval of 1.0m; or
- ≥ 0.5 g/t silver which also satisfy a minimum down-hole hole interval of 1.0m; or
- ≥ 200 ppm (or 0.02%) zinc which also satisfy a minimum down-hole interval of 1.0m; or
- ≥ 100 ppm (or 0.01%) tungsten which also satisfy a minimum down-hole interval of 1.0m.
- NB: In some instances, zones grading less than the cut-off grade/s have been included to highlight mineralisation trends.
- NB: For the purpose of highlighting significant (generally isolated) results some intersections may be included in the Table above which do not satisfy the criteria above.
- No top-cutting has been applied to assay results for gold, copper or silver;
- Intersection true widths are unknown and would vary depending on the angle at which each individual drill hole intersects the mineralisation domain.

Table 3: Citadel - 2017 Phase 1 Air Core and Phase 2 Reverse Circulation drill hole collar location (MGA Zone 51/GDA 94)

Hole ID	Hole Type	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
17ACC0086	RC	Calibre	7,702,598	417,037	274	300	225	-70	Received
17ACC0087	RC	Calibre	7,702,495	416,940	274	312	225	-60	Received
17ACC0088	RC	Calibre	7,702,400	416,900	253	254	225	-65	Received
17ACC0089	RC	Rimfire	7,700,458	393,942	268	270	0	-90	Received
17ACC0090	RC	Rimfire	7,700,795	394,116	290	260	0	-90	Received
17ACC0091	RC	Rimfire	7,700,376	395,035	316	348	0	-90	Received
17ACC0092	RC	Hangfire	7,695,975	, 395,160	274	150	0	-90	Received
17ACC0093	RC	Hangfire	7,696,033	, 394,981	274	179	0	-90	Received
17ACC0094	RC	Hangfire	7,696,143	395,884	275	119	0	-90	Received
17ACC0095	RC	Valentina	7,700,163	396,147	273	108	0	-90	Received
17ACC0096	RC	Westwood	7,696,720	390,010	275	132	0	-90	Received
17ACA0001	AC	Valentina	7,699,115	396,438	257	80	0	-90	Received
17ACA0002	AC	Valentina	7,699,183	396,250	257	5	0	-90	Received
17ACA0003	AC	Valentina	7,699,250	396,062	257	53	0	-90	Received
17ACA0004	AC	Valentina	7,699,593	396,400	257	48	0	-90	Received
17ACA0004	AC	Valentina	7,699,660	396,211	257	48 54	0	-90	Received
17ACA0005	AC	Valentina	7,699,894	396,307	257	58	0	-90	Received
17ACA0000	AC	Valentina	7,699,963	396,307 396,121	257	55	0	-90 -90	Received
17ACA0007	AC	Valentina	7,700,012	390,121 395,987	257	55 71	0	-90 -90	Received
17ACA0008 17ACA0009	AC	Valentina	7,700,012	395,825	257	65	0	-90 -90	Received
17ACA0009	AC	Valentina	7,700,350	396,228	257	54	0	-90	Received
17ACA0010 17ACA0011	AC	Valentina	7,700,433	396,051	257	51	0	-90	Received
17ACA0011 17ACA0012	AC	Valentina	7,700,433	396,330	257	57	0	-90 -90	Received
17ACA0012 17ACA0013	AC	Valentina		396,330 396,171	257	60	0	-90 -90	Received
17ACA0013 17ACA0014		Valentina	7,700,667		257	60 60	0	-90 -90	
	AC		7,700,751	395,989	257 257	60 59			Received
17ACA0015	AC	Valentina	7,700,800	395,817	257	59 57	0 0	-90	Received
17ACA0016	AC	Valentina Valentina	7,700,796	396,220		57 63		-90	Received
17ACA0017	AC	Valentina	7,700,880	396,039	257		0	-90	Received
17ACA0018	AC	Valentina	7,700,168	396,146	257	57	0	-90	Received
17ACA0019	AC	Hangfire	7,695,999	397,383	257	45	0	-90	Received
17ACA0020	AC	Hangfire	7,696,138	397,008	257	45	0	-90	Received
17ACA0021	AC	Hangfire	7,696,278	396,633	257	40	0	-90	Received
17ACA0022	AC	Hangfire	7,695,806	397,246	257	24	0	-90	Received
17ACA0023	AC	Hangfire	7,695,954	396,878	257	33	0	-90	Received
17ACA0024	AC	Hangfire	7,695,542	397,367	257	27	0	-90	Received
17ACA0025	AC	Hangfire	7,695,692	396,998	257	33	0	-90	Received
17ACA0026	AC	Hangfire	7,695,842	396,627	257	31	0	-90	Received
17ACA0027	AC	Hangfire	7,695,992	396,256	257	33	0	-90	Received
17ACA0028	AC	Hangfire	7,696,142	395,885	257	62	0	-90	Received
17ACA0029	AC	Hangfire	7,695,247	397,543	257	22	0	-90	Received
17ACA0030	AC	Hangfire	7,695,389	397,170	257	57	0	-90	Received
17ACA0031	AC	Hangfire	7,695,563	396,810	257	33	0	-90	Received
17ACA0032	AC	Hangfire	7,695,737	396,450	257	36	0	-90	Received
17ACA0033	AC	Hangfire	7,694,707	398,321	257	29	0	-90	Received
17ACA0034	AC	Hangfire	7,694,852	397,948	257	20	0	-90	Received
17ACA0035	AC	Hangfire	7,695,444	396,461	257	42	0	-90	Received
17ACA0036	AC	Hangfire	7,695,594	396,090	257	40	0	-90	Received
17ACA0037	AC	Hangfire	7,695,743	395,719	257	54	0	-90	Received
17ACA0038	AC	Hangfire	7,695,882	395,350	257	51	0	-90	Received
17ACA0039	AC	Hangfire	7,696,029	394,978	257	45	0	-90	Received
17ACA0040	AC	Hangfire	7,695,357	396,114	257	60	0	-90	Received
17ACA0041	AC	Hangfire	7,695,521	395,749	257	55	0	-90	Received
17ACA0042	AC	Hangfire	7,695,714	395,399	257	36	0	-90	Received
17ACA0043	AC	Hangfire	7,695,869	395,031	257	45	0	-90	Received
17ACA0044	AC	Hangfire	7,696,036	394,667	257	60	0	-90	Received
17ACA0045	AC	Hangfire	7,694,509	398,078	257	21	0	-90	Received

Hole ID	Hole Type	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
17ACA0046	AC	Hangfire	7,694,625	397,699	257	39	0	-90	Received
17ACA0047	AC	Hangfire	7,694,759	397,322	257	36	0	-90	Received
17ACA0048	AC	Hangfire	7,695,183	395,872	257	51	0	-90	Received
17ACA0049	AC	Hangfire	7,695,346	395 <i>,</i> 508	257	60	0	-90	Received
17ACA0050	AC	Hangfire	7,695,531	395,155	257	54	0	-90	Received
17ACA0051	AC	Hangfire	7,695,725	394,806	257	66	0	-90	Received
17ACA0052	AC	Hangfire	7,695,839	394,425	257	54	0	-90	Received
17ACA0053	AC	Hangfire	7,695,967	394,046	257	61	0	-90	Received
17ACA0054	AC	Westwood	7,699,867	389,478	257	57	0	-90	Received
17ACA0055	AC	Westwood	7,699,798	389,666	257	57	0	-90	Received
17ACA0056	AC	Westwood	7,699,367	389,623	257	57	0	-90	Received
17ACA0057	AC	Westwood	7,699,298	389,811	257	78	0	-90	Received
17ACA0058	AC	Westwood	7,698,991	389,486	257	57	0	-90	Received
17ACA0059	AC	Westwood	7,698,854	389,862	257	79	0	-90	Received
17ACA0060	AC	Westwood	7,698,717	390,238	257	60	0	-90	Received
17ACA0061	AC	Westwood	7,698,410	389,913	257	77	0	-90	Received
17ACA0062	AC	Westwood	7,698,547	389,537	257	80	0	-90	Received
17ACA0063	AC	Westwood	7,698,684	389,161	257	82	0	-90	Received
17ACA0064	AC	Westwood	7,698,420	389,215	257	67	0	-90	Received
17ACA0065	AC	Westwood	7,698,282	389,590	257	84	0	-90	Received
17ACA0066	AC	Westwood	7,698,145	389,966	257	68	0	-90	Received
17ACA0067	AC	Westwood	7,698,008	390,342	257	55	0	-90	Received
17ACA0068	AC	Westwood	7,697,771	390,431	257	70	0	-90	Received
17ACA0069	AC	Westwood	7,697,907	390,055	257	63	0	-90	Received
17ACA0070	AC	Westwood	7,698,044	389,679	257	58	0	-90	Received
17ACA0071	AC	Westwood	7,697,719	389,882	257	68	0	-90	Received
17ACA0072	AC	Westwood	7,697,582	390,258	257	14	0	-90	Received
17ACA0073	AC	Westwood	7,697,513	390,446	257	51	0	-90	Received
17ACA0074	AC	Westwood	7,697,375	390,163	257	57	0	-90	Received
17ACA0075	AC	Westwood	7,697,510	389,786	257	66	0	-90	Received
17ACA0076	AC	Westwood	7,697,085	389,972	257	68	0	-90	Received
17ACA0077	AC	Westwood	7,696,718	390,021	257	56	0	-90	Received

CITADEL PROJECT

Section 1 – Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria JORC Code explanation	Commentary
Criteria JORC Code explanation mpling Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Commentary 2017 Air Core Drilling The drilling programme involved the completion of 77 (including four drill holes abandoned in th Permian cover sequence i.e. 17ACA0002, 17ACA0029, 17ACA0034, and 17ACA0072) air core dr holes, totalling 4,036m with an average maximum drill hole depth of 52m. Assays available for all of the 73 completed air core drill holes. The drilling programme investigated key target areas within the greater Rimfire 4.8km copper miner system including several adjacent targets identified from aeromagnetics Significant areas of siliceous ferricrete (laterite) within the transported cover which could not the penetrated by air core resulted in completion of only 78% of the forecast programme. AC Sampling: AC Sampling was carried out under Antipa protocols and QAQC procedures as per industry be practice. AC samples were drilled using a NQ diameter blade bit and sampled on intervals of 1.0m using a r mounted rotary splitter from which a 2 kg (average) sample was collected. This was pulverised at the laboratory to produce material for assay 2017 Reverse Circulation Drilling The drilling programme involved the completion of 11 Reverse Circulation (RC) drill holes, totallin 2,490m with an average maximum drill hole depth of 226m. Assays available for all of the 11 completed RC drill holes. The drilling programme investigated a number of targets including IP target south of the Calibre deposit Several targets defined from Phase 1 air core drilling Reverse Circulation Sampling: RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry be practice. RC sampling was carried out under Antipa protocols and QAQC procedures as per industry be practice. RC Sampling was carried out under Antipa

Criteria	JORC Code explanation	Commentary
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 2017 Air Core Drilling A total of 77 air core drill holes were drilled totalling 4,039m with average maximum drill hole depth of 52m. All drill holes were completed using NQ diameter blade bit from surface to total drill hole depths of between 5m to 84m.
		2017 Reverse Circulation Drilling
		 A total of 11 RC drill holes were drilled totalling 2,492m with average maximum drill hole depth of 226m All drill holes were completed using 140mm RC face sampling hammer drill bit from surface to total drill hole depths of between 108m and 348m Drill holes were predominantly vertical with some holes directed towards the SW (225° Magnetic) and all drill holes at an inclination angle of -60 to -90 at the collar to optimally intersect the mineralisation.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Air Core Drill Samples Moisture content and sample recovery is recorded for each AC sample. AC sample recovery was recorded via visual estimation of sample volume and marked as poor (<70% recovery) or good (70% - 100%). AC sample recovery ranges from poor to good with only very occasional samples with poor recovery. The majority of the air core drill holes intersected the water table resulting in wet samples. To ensure a representative sample all wet and dry samples were sampled directly in to calico bags attached to a chute of the rig mounted rotary splitter All samples were split on a 1m interval using a rig-mounted rotary splitter. Adjustments were made to ensure representative 3 kg sample volumes were collected. Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery. AC sample recovery and sample quality was recorded via visual estimation of sample volume and condition of the drill spoils. AC results are generated for the purpose of exploration.
		Reverse Circulation Drill Samples
		 RC sample recovery was via visual estimation of sample volume and marked as poor (<70% recovery) or good (70% - 100%). RC sample recovery ranges from poor to good with only very occasional samples with poor recovery RC sample recovery was maximized by endeavouring to maintain dry drilling conditions as much as practicable; the RC samples were almost exclusively dry All samples were split on a 1m interval using a rig-mounted cone splitter. Adjustments were made to ensure representative 2 kg to 3 kg sample volumes were collected.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and	 Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery RC sample recovery and sample quality was recorded via visual estimation of sample volume and condition of drill spoils. RC results are generated for the purpose of exploration and potentially for Mineral Resource estimations Air Core Drill Logging
	 geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All air core material is logged. Air core results are generated solely for the purpose of low-level geochemical exploration and are not appropriate for Mineral Resource estimation Logging includes both qualitative and quantitative components. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master Access SQL database. Geological logging of 100% of all air core sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. Selected air core sample intervals were measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. Selected air core samples are generally analysed in the field using a Portable XRF Device (Olympus) for the purposes of geochemical and lithological interpretation and hole prioritization
		Reverse Circulation Drill Logging
		 All RC material is logged. Logging includes both qualitative and quantitative components. All logging is entered directly into a Toughbook computer using Antipa Proprietary Logging System which is based in AcQuire. Further validation is carried out during upload to Antipa's master Access SQL database. Geological logging of 100% of all RC sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. Selected RC sample intervals were measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. RC samples are generally analysed in the field using a Portable XRF Device (Olympus) for the purposes of geochemical and lithological interpretation and the selection of sampling intervals.
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and 	 Air Core Samples Air core samples for all drill holes were drilled using a NQ drill bladed bit and split on intervals of 1.0m using a rig mounted rotary splitter from which a 2 kg (average) sample which was pulverised at

Criteria	JORC Code explanation	Commentary
sample preparation	 whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 the laboratory to produce material for assay. Field duplicate samples were collected for all air core drill holes. Reverse Circulation Samples RC samples for all drill holes were drilled using a 140mm diameter face sampling hammer and split on intervals of 1.0m using a rig mounted cone splitter from which a 3 kg (average) sample which was pulverised at the laboratory to produce material for assay. Compositing of unmineralised regions (guided by Portable XRF / Olympus field analysis) of between 2 to 4m was undertaken via combining "Spear" samples of the unmineralised sample intervals to generate a 3 kg (average) sample which was pulverised at the laboratory to produce material for assay.
		 Field duplicate samples were collected for all RC drill holes Reverse Circulation and Air Core sample preparation Sample preparation of air core samples was completed at ALS Laboratory Group in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the sample using a primary crusher down to crushed size of approximately 70% passing 2mm, followed by pulverisation of a rotary split 1 kg aliquot to a grind size of approximately 85% passing 75 µm via a ring mill pulveriser using a carbon steel ring set. The pulverised sample is then further split into a sub–sample/s for analysis. The sample sizes are considered appropriate to suitably represent sample material derived from this type of reconnaissance (geochemical) drill-based exploration programme.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The sample preparation technique for air core and RC samples is documented by Antipa Mineral Ltd's standard procedures documents and is in line with industry standards in sample preparation. The sample sizes are considered appropriate to represent mineralisation. Sample preparation checks for fineness were carried out by the laboratory as part of its internal procedures. Analytical Techniques: All samples were dried, crushed, pulverised and split to produce a sub–sample for a 0.25g sample which are digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acids ("four acid digest") suitable for silica based samples. This digest is considered to approach a total dissolution for most minerals. Analytical methods used were Inductively Coupled Plasma Atomic Emission Spectroscopy / Mass Spectrometry (ICP–AES / ICP-MS) for Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, S, Sb, Sc, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr.

Criteria	JORC Code explanation	Commentary
		 Pd and Pt are considered semi-quantitative in nature and with the Au results being determined from only 0.25g of material dissolved sample material they must be treated with caution. The Au, Pd and Pt data are obtained by this method for the purposes of identifying low level geochemical anomalism. A lead collection Fire Assay on a 50g sample with Inductively Coupled Plasma Atomic Absorption Spectroscopy (ICP-AAS) undertaken to determine gold content with a detection limit of 0.005ppm (for selected mineralised samples). Ore grade ICP-AES analysis was completed on samples returning results above upper detection limit No geophysical tools were used to determine any element concentrations in this report. A handheld portable XRF analyser (Olympus) device is used in the field to investigate and record geochemical data for internal analysis. However, due to "spatial" accuracy/repeatability issues this data is not publicly reported. Field QC procedures involve the use of commercial certified reference material (CRM's) for assay standards and blanks. Standards are inserted at a rate of 5 per 100 samples. The grade of the inserted standard is not revealed to the laboratory. Field duplicates/repeat QC samples were utilised during the air core and RC drilling programmes at a rate of 2 per 100 samples. Inter laboratory cross-checks analysis programmes have not been conducted at this stage. In addition to Antipa supplied CRM's, ALS Laboratory Group includes in each sample batch assayed certified reference materials, blanks and up to 10% replicates.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections of the 2017 RC drilling have been visually verified by the Exploration Manager. Significant intersections of the 2017 AC drilling are considered to be of geochemical reconnaissance in nature and have not been verified by independent or alternative company personnel. For the air core programme all logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master SQL database. For the RC programme all logging is entered directly into a Toughbook computer using Antipa Proprietary Logging System which is based in AcQuire. Further validation is carried out during upload to Antipa's master SQL database. For the RC programme all logging is entered directly into a Toughbook computer using Antipa Proprietary Logging System which is based in AcQuire. Further validation is carried out during upload to Antipa's master SQL database. No adjustments or calibrations have been made to any assay data collected.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 km = kilometre; m = metre; mm = millimetre. Drill hole collar locations are surveyed using a handheld Garmin Montana GPS which has an accuracy of ± 3m. The drilling co-ordinates are all in GDA94 MGA Zone 51 co-ordinates. The Company did not adopt or reference any specific local grid/s across the Citadel Project during this 2017 drilling Programme. The topographic surface has been defaulted to 265m RL. The topographic surface has been compiled using the drill hole collar coordinates.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 2017 Air Core Drilling All air core drill holes were drilled on a nominal 200 x 400m grid at each key target area. All air core drill holes were vertical. The drill hole spacing and distribution is insufficient to establish the degree of geological and grade continuity necessary to support future Mineral Resource estimations. AC drill sample compositing has been applied for the reporting of some exploration results. 2017 Reverse Circulation Drilling
		 All RC drill holes were reconnaissance in nature and so a nominal drill spacing is not relevant. Where more than one drill hole was completed at a specific target area the hole spacing ranged from 100m to 350m. Due to the reconnaissance nature of the program 8 of the RC drill holes were vertical. 3 of the RC drill holes, all located at Calibre target area, are angled towards MGA southwest (225° magnetic) to be approximately perpendicular to the strike of the known mineralisation trend at Calibre and at a suitable angle to the dip of the known dominant mineralisation. These 3 RC drill holes were collared at an incline of -60 to 'optimally' intersect the known mineralisation trend at Calibre. The section spacing is sufficient to establish the degree of geological grade and continuity necessary to support future Mineral Resource estimations. RC drill sample compositing has been applied for the reporting of some exploration results.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 2017 AC Drilling At this stage, it cannot be determined with any certainty if any consistent and/or material bias exists in the 2017 air core drill hole sampling as a result of the drill hole location and/or orientation in relation to possible mineralised structures. Current hole orientation is considered appropriate for reconnaissance style exploration to reasonably assess the prospectivity of the key target areas 2017 Reverse Circulation Drilling

Criteria	JORC Code explanation	Commentary			
		 At this stage, it cannot be determined with any certainty if any consistent and/or material bias exists in the 2017 RC drill hole sampling as a result of the drill hole location and/or orientation in relation to possible mineralised structures. At Calibre the location and orientation of the RC drilling is appropriate given the strike, dip and morphology of the mineralisation. Both folding and multiple vein directions have been recorded via pre-2017 diamond drilling at several locations within the Citadel Project (i.e. Magnum, Calibre, Colt and Corker). 			
Sample security	• The measures taken to ensure sample security.	 Chain of sample custody is managed by Antipa to ensure appropriate levels of sample security. Samples are stored on site and delivered by Antipa or their representatives to Port Hedland and subsequently by Toll to the assay laboratory in Perth. 			
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Sampling techniques and procedures are regularly reviewed internally, as is the data. Consultants Snowden, during completion of the 2013 Calibre Mineral Resource estimate, undertook a desktop review of the Company's sampling techniques and data management and found them to be consistent with industry standards. 			

CITADEL PROJECT

Section 2 – Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The drilling is located wholly within granted Exploration Licenses E45/2877 and E45/2876. Antipa currently has a 100% interest in all Citadel Project tenements, including E45/2876 and E45/2876, and there are no royalties on these tenements. On 9 October 2015, Farm-in and JV Agreements were executed between Antipa and Rio Tinto Exploration Pty Limited (Rio Tinto). E45/2877 and E45/2876 is contained completely within land where the Martu People have been determined to hold Native Title rights. No historical or environmentally sensitive sites have been identified in the area of work. The tenement is in 'good standing' with the Western Australian DMIRS. No known impediments exist, including to obtain a licence to operate in the area.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Citadel Project: Prior to 1991 limited to no mineral exploration activities. 1991 to 1996 BHP Australia completed various regional airborne geophysical surveys (e.g. aeromagnetics, radiometrics, GeoTEM, ground magnetics, surface EM), geochemical air core and selected diamond drilling programmes across a significant area which covered the Citadel Project. Whilst this era of exploration highlighted a number of areas as being variously anomalous, BHP did not locate any basement (Proterozoic) precious or base metal mineralisation. In 1995 BHP Minerals

Criteria	JORC Code explanation	Commentary
		 completed an MMI-A/MMI-B soil programme over an area which was ultimately found to be the region within which the Magnum deposit was located. 1997 to 2002 IV partners Croesus-Gindalbie completed minor surface geophysical surveys (e.g. electromagnetics) and various drilling programmes across parts of the Citadel Project (i.e. 17 x Diamond, 10 x RC and 134 x air core drill holes) leading to the discovery of the Magnum Au-Cu-Ag deposit, and its partial delineation, in 1998. 2002 to 2003 JV partners Teck Cominco and Croesus-Gindalbie completed detailed aeromagnetic and radiometric surveys over the entire Citadel Project, Pole-Pole IP over 8 targets and limited drilling (i.e. 4 x Diamond drill holes) within the Citadel Project. 2004 to 2005 JV partners NGM Resources and Croesus-Gindalbie completed limited drilling (i.e. 3 x Diamond drill holes) at selected Citadel Project prospects intersecting minor Au-Cu-Ag mineralisation at the Colt prospect. 2006 to 2010 Glengarry Resources/Centaurus Metals undertook re-processing of existing data and re-logging of some drill core. No drilling or geophysical surveys were undertaken, and so no new exploration results were forthcoming. 2011 to 2015 Antipa Minerals Ltd exploration of the Citadel Project including both regional and prospect/area scale geophysical surveys (i.e. MMI-M™ and SGH™ soil programmes) and drilling programmes (i.e. diamond and RC) resulting in two greenfield discoveries in 2012, i.e. Calibre and Corker, and subsequent drilling programmes. October 2015 to March 2017 Antipa Minerals Ltd operators under a Farm-in Agreement executed on the 9 October 2015 between Antipa and Rio Tinto Exploration Pty Limited ("Rio Tinto"), a wholly owned subsidiary of Rio Tinto Limited. RC drilling at Calibre late 2015, and in 2016 an extensive IP survey, a regional target RC drilling programme and single (deep) diamond drill hole were completed. April 2017 (ongoing) Rio Tinto operators under the Farm-in Agree
Geology	• Deposit type, geological setting and style of mineralisation.	• The geological setting is Paterson Province Proterozoic aged meta-sediment hosted hydrothermal shear, fault and strata/contact controlled precious and/or base metal mineralisation which is typically sulphide bearing. The mineralisation in the region is interpreted to be granite related. The Paterson is a low grade metamorphic terrane but local hydrothermal alteration and/or contact metamorphic mineral assemblages and styles are indicative of a high-temperature local environment. Mineralisation styles include vein, stockwork, breccia and skarns.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All meaningful and material Citadel Project exploration information has been included in the body of the text or can sometimes be found in previous public reports and various WA DMP (WAMEX) publicly available reports.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported aggregated length intervals have been length weighted. No density or bulk density is available and so no density weighting has been applied when calculating aggregated intervals. No top-cuts to gold or copper have been applied (unless specified otherwise). Intersections in this report are composited for the purposes of highlighting geochemical anomalism/trends from individual assays using the criteria below which are considered relevant for both the reconnaissance nature of the drilling programme and metal indicators for various known mineralisation styles within the Paterson Province. For the RC and air core drilling results a nominal cut-off grade/s applied during data aggregation: ≥ 200 ppm copper which also satisfy a minimum down-hole intersection of ≥ 1 metre; and/or ≥ 0.1 g/t gold which also satisfy a minimum down-hole intersection of ≥ 1 metre; and/or ≥ 100 ppm zinc which also satisfy a minimum down-hole intersection of ≥ 1 metre; and/or ≥ 100 ppm zinc which also satisfy a minimum down-hole intersection of ≥ 1 metre; and/or ≥ 100 ppm cobalt which also satisfy a minimum down-hole intersection of ≥ 1 metre; and/or ≥ 100 ppm cobalt which also satisfy a minimum down-hole intersection of ≥ 1 metre; and/or ≥ 100 ppm cobalt which also satisfy a minimum down-hole intersection of ≥ 1 metre; NB: In some instances, zones grading less than the cut-off grade/s have been included in calculating composites or to highlight mineralisation internal to broader zones of mineralisation (if any) are reported as included intervals. Higher grade intervals of mineralisation internal to broader zones of mineralisation (if any) are reported as included intervals.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, 	 In the areas of 2017 air core drilling located in the Rimfire Area of the Citadel Project the attitude of "bedding" and/or mineralisation was unknown. At the Calibre deposit the interpreted hydrothermal alteration, vein and breccia related gold-copper mineralisation is interpreted to be dominantly approximately north west striking and moderate to

Criteria	JORC Code explanation	Commentary
	there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	steep northeast dipping.
	noie length, the wath not known j.	Air Core Drill Holes
		• The air core drill holes in the Rimfire key target areas were vertical. The relationship between downhole width and the true width is unknown.
		Reverse Circulation Drill Holes
		• The RC drill holes in the Rimfire area were vertical. Therefore, the relationship between the downhole width and true width is unknown.
		• The RC drill holes in the eastern domain target area were inclined at -60 toward the southwest. Therefore, downhole width is estimated to approximate 60% to 80% true width dependent on the local geometry/setting.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous public reports and various WA DMP WAMEX publicly available reports.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All significant results are reported or can sometimes be found in previous public reports and various WA DMP WAMEX publicly available reports.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous public reports and various WA DMP WAMEX publicly available reports. Zones of mineralisation and associated waste material have not been measured for their bulk density; however, Specific Gravity ("Density") measurements have been taken from diamond drill core for the Magnum, Calibre and Corker deposits. Multi element assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulphur, lead, zinc and magnesium.
		 Geotechnical logging was carried out for all Antipa diamond drill holes at Magnum, Calibre, Corker and Blue Steel for Recovery, RQD and Fracture Frequency. No Geotechnical logging (e.g. Recovery, RQD and Fracture Frequency) was obtained from the WAMEX reports.
		• Information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material derived mainly from diamond drilling is stored in the Company's technical SQL database.
		• No information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material was obtained from the WAMEX reports.
		• Preliminary Metallurgical test-work results are available for the Calibre deposit and these have been previously publicly reported.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 At Rimfire significant regions of gold-copper anomalism identified by the 2017 drilling programmes requires further investigation via additional drilling ± geophysical surveys to test areas more broadly for zones of mineralisation and the lateral and vertical extensions and continuity beyond the limits of existing very broadly spaced reconnaissance drilling limits. At this stage Calibre mineralisation identified by diamond and RC drilling is understood across a 1,000 to 1,200m strike extent and is open in all direction and so requires further work/drilling to test for lateral (in particular north-south but also east-west) and vertical extensions and continuity beyond the limits of the Inferred Mineral Resource and additional drilling limits. All appropriate maps ± sections (with scales) highlighting areas of possible extensions and main geological interpretations have been included in the body of the text.