

FURTHER COPPER AND GOLD MINERALISATION IDENTIFIED AT CHICKEN RANCH AND MINYARI DOME

HIGHLIGHTS

- High-grade and shallow gold mineralisation remains open along strike at Chicken Ranch, with recent intercepts including:
 - 3.0m at 4.05 g/t gold from 63m down hole in 18CRC0011; and
 - 13.0m at 1.43 g/t gold from 47m down hole in 18CRC0001.
- Reconnaissance drilling at Minyari Dome has identified new zones of gold and copper mineralisation, including:
 - 4.0m at 1.02 g/t gold from 60m down hole in 18MYC0176; and
 - 1.0m at 1.47 g/t gold from 104m down hole in 18MYC0174.
- Antipa continues to prioritise the eleven recently identified, priority one electromagnetic conductor targets, within the highly prospective and shallow El Paso Structural Corridor.

OVERVIEW

Antipa Minerals Limited (ASX: AZY) ("Antipa", "the Company") is pleased to provide an update on further results from the recent air core and reverse circulation ("RC") drilling at the Chicken Ranch prospect and RC drilling at Minyari Dome, that form part of its 100%-owned Paterson and North Telfer Projects respectively together with further information on the previously identified electromagnetic conductivity targets in the El Paso Structural Corridor. Antipa's Chicken Ranch deposit and Minyari Dome resources are located 15 and 40km respectively from Newcrest Mining Ltd's Telfer gold mine and approximately 100km from Rio Tinto's newly established exploration camp in Western Australia's Paterson Province (Figure 5).

CHICKEN RANCH AREA

Chicken Ranch

The Chicken Ranch air core programme (195 drill holes for 10,105m) was focused on identifying new mineralisation in proximity to the existing (historic) high-grade gold mineralisation, including parallel trends (Figures 1 and 2). In addition to the air core programme, Antipa completed an initial RC programme at Chicken Ranch (16 drill holes for 2,058m) focussed on the immediate resource growth opportunity. Results for the final 60 air core and initial 16 RC drill holes have been received and include:

- 13.0m at 1.43 g/t gold from 47m down hole in 18CRC0001, including:
 - 1.0m at 6.64 g/t gold from 53m.
- 3.0m at 4.05 g/t gold from 63m down hole in 18CRC0011, including:
 - 1.0m at 7.88 g/t gold from 63m.
- 2.0m at 2.77 g/t gold from 27m down hole in 18CRC0011, including:
 - 1.0m at 4.53 g/t gold from 27m.

Available results together with historical drill intersections confirm the high-grade gold potential of the Chicken Ranch area, positioned just 25km south of the Company's existing

Minyari Dome Mineral Resources. The Company will focus on delivering a maiden Mineral Resource for the Chicken Ranch deposit during the first quarter of 2019.

Refer to Figures 1 and 2 for plan views summarising the drilling results and Table 1a and Tables 2a-b for drill hole intersection and collar details.

In addition, the Company has recently completed follow-up RC drilling (4 holes for 475m), with results for these drill holes expected within the next few weeks.

Antipa would like to acknowledge the Western Australia Government's Exploration Incentive Scheme (EIS), through which it secured co-funding grants totalling up to \$149,500 for up to 4,600m of the 2018-19 Chicken Ranch RC drilling.

Turkey Farm

In other exploration activities undertaken across the broader Chicken Ranch area, a prospecting exercise identified significant coarse gold, including gold nuggets, within surface laterite (oxide) material at the Company's Turkey Farm prospect located just 1km west of the Chicken Ranch deposit (refer to Figures 2 and 4a-b). The identification of coarse gold in combination with significant historic drill intersections grading up to 12.1 g/t gold, from broad 200m spaced drill holes, confirms the Company's view on prospectivity, including the potential for additional shallow gold resources.

MINYARI DOME

The initial phase of the Minyari Dome 2018 RC drill programme consisted of 45 RC drill holes for 7,241m and was focused on identifying new mineralisation in close proximity to the existing high-grade 723,000 ounce gold, 26,400 tonne copper and 4,000 tonne cobalt Mineral Resources¹ of Minyari and WACA (Figure 3). Results have now been received for a further 18 RC holes, which tested various targets within 130m to 7.2km of the defined Minyari Dome resources. Refer to Figure 3 for a plan view summarising the drilling results and Table 1b and Tables 2c for drill hole intersection and collar details.

Minyari North

Highlights of Minyari North drilling include:

- A new zone of gold mineralisation at Minyari North has been identified approximately 720m north of the current Minyari resource. While the target remains preliminary in nature, mineralisation appears to remain open along strike and requires follow up drilling, key intercepts include:
 - 4.0m at 1.02 g/t gold from 60m down hole in 18MYC0176; and
 - 1.0m at 1.47 g/t gold from 104m down hole in 18MYC0174.

Gonzo

Following from eight shallow air core drill holes (i.e. five historic and three 2017 holes) the company has identified a new zone of copper + gold-cobalt-silver mineralisation at depth and approximately 1.6km northwest of the defined Minyari resource. Drill hole 18MYC0171 is

¹ Refer to Minyari Deposit and WACA Deposit Mineral Resource Statement in the Competent Persons Statement section of this document.

located on the north-eastern edge of the Gonzo co-incident AEM conductivity and magnetic anomaly which measures approximately 500m by 220m (Figure 3) and returned:

- 3m at 0.36% copper and 0.10 g/t gold from 213m down hole in 18MYC0171, including:
 - 1m at 0.78% copper, 0.18 g/t gold, 0.04% cobalt and 2.24 g/t silver.

The Company's review of the Gonzo target is ongoing.

Recent drill results that identify new zones of potentially significant mineralisation in combination with previously reported high-grade results (see ASX releases 1 August and 2 October 2018) including 18m at 3.05g/t gold, 0.32% copper and 0.05% cobalt from 47m at Minyari South and at Judes 45m at 0.56% copper, 0.10 g/t gold and 2.21 g/t silver from 72m including 10m at 2.05% copper, 0.19 g/t gold and 9.11 g/t silver from 106m, highlight the potential to add new zones of high-grade gold-copper resource across the Minyari Dome.

In addition, the Company has recently completed follow-up RC drilling (5 holes for 605m), with results for these drill holes expected within the next few weeks.

Antipa would like to acknowledge the Western Australia Government's Exploration Incentive Scheme (EIS), through which it secured co-funding grants totalling up to \$298,000 for up to 8,000m of the 2018 Minyari Dome RC drilling.

EL PASO ELECTROMAGNETIC TARGETS

The previously announced aerial electromagnetic ("AEM") survey (dated 15 October 2018) covered a total strike length of 70km across the highly prospective El Paso Structural Corridor and identified a total of eleven high priority EM conductivity targets for further exploratory work. The Company has since had the opportunity to further prioritise these targets and undertake additional field-based activities, including establishing access tracks. The exploration work programme involves ongoing drill planning, completion of a heritage survey during November and subsequent drill programmes. The current timeline envisages the completion of an air core drill programme during the first quarter of 2019 and, contingent upon results, a follow-up RC drill programme. AEM has been instrumental in several significant Paterson Province discoveries and this is the first geophysical survey of this type over this area.

Ongoing exploration activities at the Company's Paterson Province Projects this year include:

- Awaiting assays for first tranche of RC drill holes at Tim's Dome and follow-up RC holes at both Minyari Dome and Chicken Ranch;
- Aerial EM target drill planning including heritage survey;
- Turkey Farm prospect drill planning including heritage survey; and
- 3D geological modelling and Mineral Resource estimation.

For further information, please visit www.antipaminerals.com.au or contact:

Roger Mason	Stephen Power	Luke Forrestal
Managing Director	Executive Chairman	Senior Account Director
Antipa Minerals Ltd	Antipa Minerals Ltd	Media & Capital Partners
+61 (0)8 9481 1103	+61 (0)8 9481 1103	+61 (0)8 9389 4270

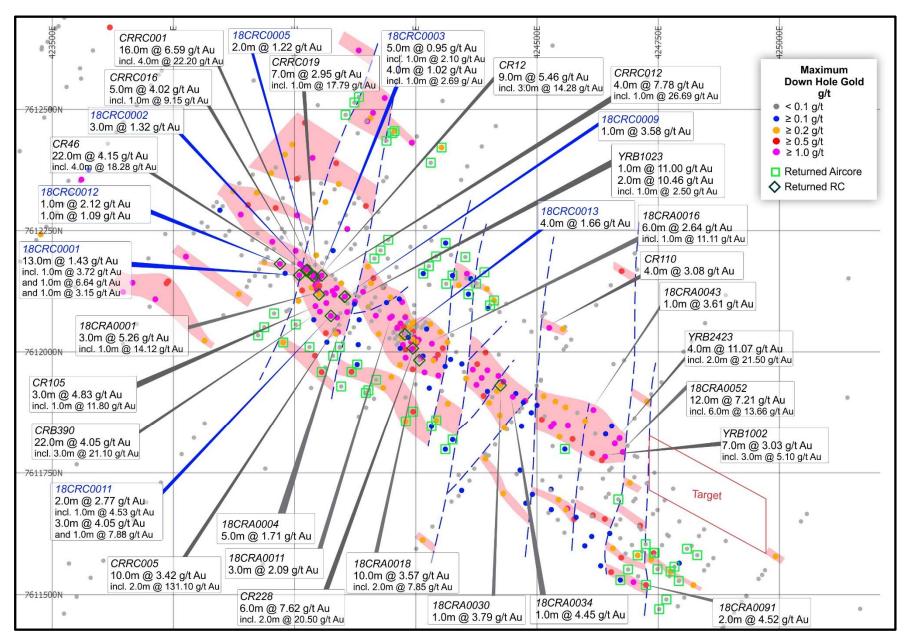


Figure 1: Plan view of the Chicken Ranch area showing maximum down hole gold values, significant drill intersections and interpreted north-south faults (dashed blues lines) displacing mineralised zones (red shaded areas). NB: Holes awaiting results not shown. Regional GDA94 / MGA Zone 51 co-ordinates, 250m grid.

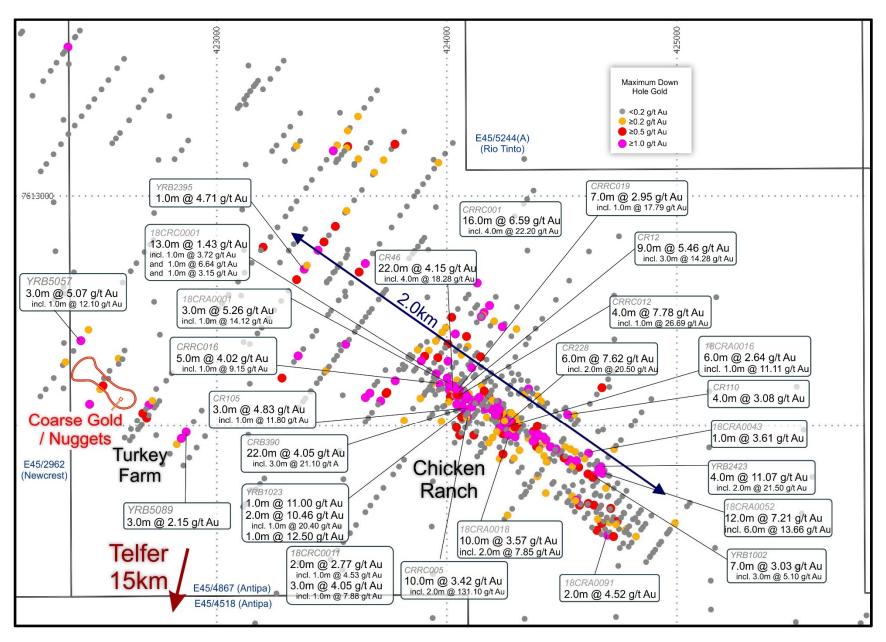


Figure 2: Plan view of the Chicken Ranch and Turkey Farm area showing maximum down hole gold values, significant drill intersections and location of Turkey Farm coarse gold (including nuggets) approximately 1km west of the Chicken Ranch deposit. NB: Regional GDA94 / MGA Zone 51 co-ordinates, 1,000m grid.

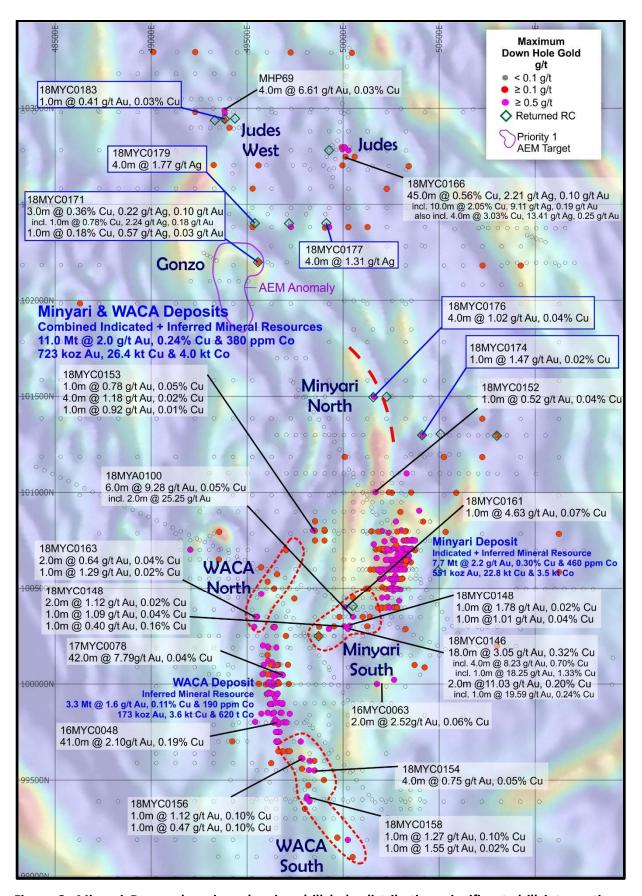
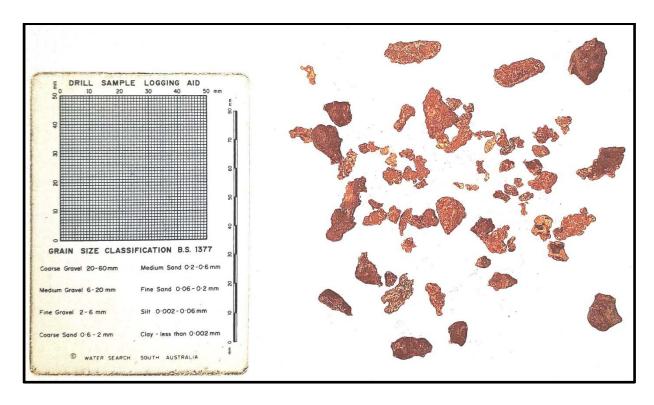



Figure 3: Minyari Dome plan view showing drill hole distribution, significant drill intersections, prospect and deposit locations. NB: Over Airborne magnetic image (50m flight-line spacing at an altitude of 30m; Pseudo-colour First Vertical Derivative) and Regional GDA94 / MGA Zone 51 co-ordinates, 500m grid.

Figures 4a-b: Turkey Farm coarse grained gold, including nuggets, from surface laterite (oxide) material only 1km west of the Chicken Ranch deposit. NB: Turkey Farm historic drilling is limited and very broad spaced (i.e. 200m sections).

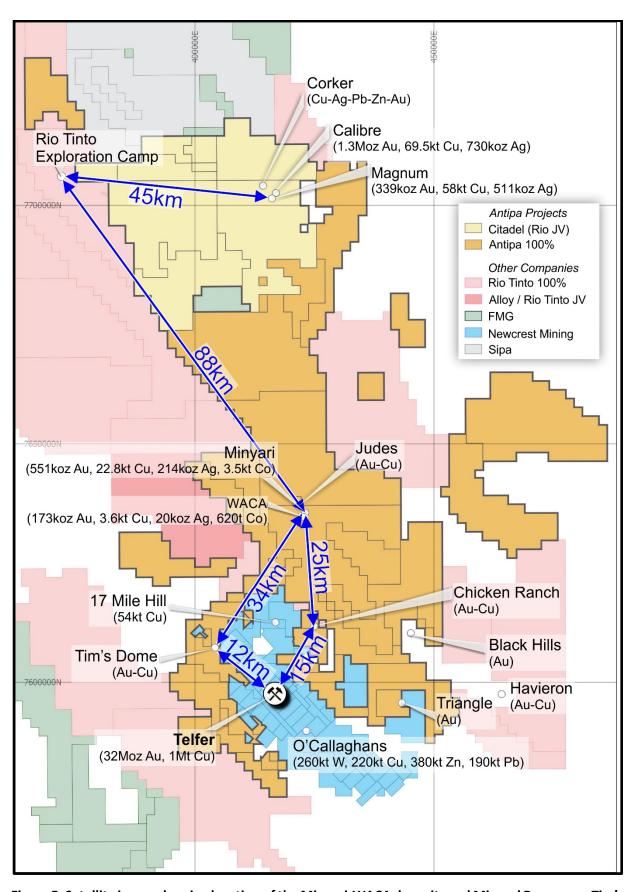
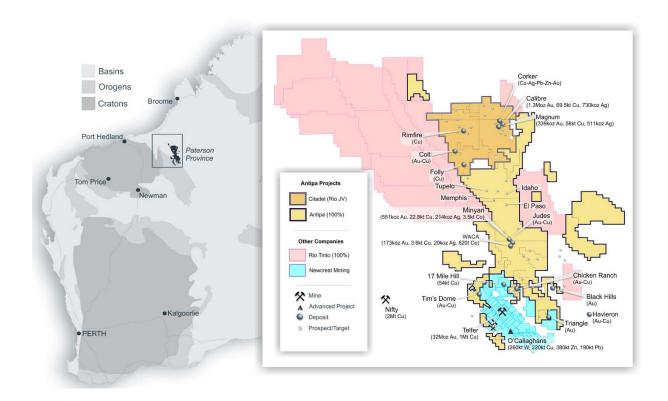



Figure 5: Satellite image showing location of the Minyari-WACA deposits and Mineral Resources, Tim's Dome, Chicken Ranch and Turkey Farm areas, Antipa 100% owned tenements ("frosted") and Newcrest Mining Ltd's Telfer Mine and O'Callaghans deposit. NB: Regional GDA94 / MGA Zone 51 co-ordinates, 20km grid.

About Antipa Minerals:

Antipa Minerals Ltd is an Australian public company which was formed with the objective of identifying under-explored mineral projects in mineral provinces which have the potential to host world-class mineral deposits, thereby offering high leverage exploration and development potential. The Company owns 5,785km² of tenements in the Paterson Province of Western Australia, including a 1,335km² package of prospective granted tenements known as the Citadel Project. The Citadel Project is located approximately 75km north of Newcrest's Telfer Gold-Copper-Silver Mine and includes the gold-copper-silver±tungsten Mineral Resources at the Calibre and Magnum deposits and high-grade polymetallic Corker deposit. Under the terms of a Farm-in and Joint Venture Agreement with Rio Tinto Exploration Pty Limited ("Rio Tinto"), a wholly owned subsidiary of Rio Tinto Limited, Rio Tinto can fund up to \$60 million of exploration expenditure to earn up to a 75% interest in Antipa's Citadel Project.

The Company has an additional 1,310km² of granted exploration licences, known as the North Telfer Project which hosts the high-grade gold-copper Minyari and WACA Mineral Resources and extends its ground holding in the Paterson Province to within 20km of the Telfer Gold-Copper-Silver Mine and 30km of the O'Callaghans tungsten and base metal deposit. The Company has also acquired, from the Mark Creasy controlled company Kitchener Resources Pty Ltd, additional exploration licences in the Paterson Province which cover 831km² and the Company owns a further 312km² of exploration licences (including both granted tenements and applications), which combined are known as the Paterson Project, which comes to within 3km of the Telfer Mine and 5km of the O'Callaghans deposit.

Competent Persons Statement – Exploration Results:

The information in this report that relates to the Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Roger Mason, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Mason is a full-time employee of the Company. Mr Mason is the Managing Director of Antipa Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Mason has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mason consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Competent Persons Statement – Mineral Resource Estimations for the Minyari-WACA Deposits:

The information in this report that relates to relates to the estimation and reporting of the Minyari-WACA deposits Mineral Resources is extracted from the report entitled "Minyari/WACA Deposits Maiden Mineral Resources" created on 16 November 2017, which is available to view on www.antipaminerals.com.au and www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

For completeness, the current Minyari Deposit and WACA Deposits Mineral Resource Statement is reproduced below:

Deposit and Au Cut-off Grade*	Resource Category	Tonnes (kt)	Au (g/t)	Cu (%)	Ag (g/t)	Co (ppm)	Au (oz)	Cu (t)	Ag (oz)	Co (t)
Minyari 0.5 Au Minyari 0.5 Au	Indicated Inferred	3,160 660	1.9 1.7	0.30 0.24	0.7 0.6	590 340	193,000 36,300	9,500 1,600	75,700 13,400	1,860 230
Minyari 0.5 Au	Sub-Total	3,820	1.9	0.29	0.7	550	229,300	11,100	89,100	2,090
Minyari 1.7 Au Minyari 1.7 Au	Indicated Inferred	230 3,650	2.6 2.6	0.29 0.30	0.9 1.0	430 370	18,800 302,400	700 10,900	6,800 117,200	100 1,360
Minyari 1.7 Au	Sub-Total	3,870	2.6	0.30	1.0	380	321,200	11,600	124,000	1,450
Minyari	Total	7,700	2.2	0.29	0.9	460	550,500	22,700	213,100	3,540
WACA 0.5 Au	Inferred	2,780	1.4	0.11	0.2	180	122,000	3,100	15,900	490
WACA 1.7 Au	Inferred	540	2.9	0.10	0.2	230	50,900	500	3,800	120
WACA	Total	3,320	1.6	0.11	0.2	190	172,800	3,700	19,700	620
Minyari + WACA Deposits	Grand Total	11,020	2.0	0.24	0.7	380	723,300	26,400	232,800	4,160

^{*0.5} Au = Using a 0.5 g/t gold cut-off grade above the 50mRL (NB: potential "Open Cut" cut-off grade)

Various information in this report which relates to Chicken Ranch Exploration Results have been extracted from the following announcements:

- Report entitled "Antipa Secures High Grade Chicken Ranch Deposit" created on 2 August 2017;
- Report entitled "Antipa to Commence Major Exploration Programme" created on 1 June 2018;
- Report entitled "RIU Explorers Conference Presentation" created on 27 March 2018;
- Report entitled "Updated Corporate Presentation April 2018" created on 12 April 2018;
- Report entitled "WA Govt Exploration Drilling Grants increase to \$710,000" created on 31 May 2018;
- Report entitled "Major Exploration Campaign Commences" created on 25 June 2018;
- Report entitled "2018 Exploration Programme Update" created on 16 July 2018;
- Report entitled "2018-19 Exploration Programme Overview and Update August" created on 15 August 2018; and
- Report entitled "Further High-Grade Gold Mineralisation at Chicken Ranch" created on 19 September 2018.

^{*1.7} Au = Using a 1.7 g/t gold cut-off grade below the 50mRL (NB: potential "Underground" cut-off grade)

Various information in this report which relates to Minyari Dome Ranch Exploration Results have been extracted from the following announcements:

- Report entitled "North Telfer Project Update on Former NCM Mining Leases" created on 3 December 2015;
- Report entitled "High Grade Gold Mineralisation at Minyari Dome" created on 8 February 2016;
- Report entitled "Minyari Deposit Drilling to Commence May 2016" created on 2 May 2016;
- Report entitled "Minyari Phase 1 Drilling Commences" created on 2 June 2016;
- Report entitled "Further Historical High-grade Gold Intersections at Minyari" created on 14 June 2016;
- Report entitled "Minyari Reprocessed IP Survey Results" created on 5 July 2016;
- Report entitled "Minyari Phase 1 Drilling Update No. 1" created on 20 July 2016;
- Report entitled "Completion of Phase 1 Minyari Deposit RC Drilling Programme" created on 9 August 2016;
- Report entitled "Minyari Drilling Update No. 3" created on 17 August 2016;
- Report entitled "New Gold Opportunity Tim's Dome South" created on 22 September 2016;
- Report entitled "Minyari Drilling Update No. 4" created on 29 September 2016;
- Report entitled "Minyari Dome Phase 2 Exploration Programme Commences" created on 31 October 2016;
- Report entitled "North Telfer and Citadel Exploration Programme Update" created on 16 November 2016;
- Report entitled "Minyari Dome Drilling Update No. 1" created on 16 December 2016;
- Report entitled "Minyari Dome and Citadel Phase 2 Update" created on 9 February 2017;
- Report entitled "Minyari Dome 2017 Exploration Programme" created on 27 March 2017;
- Report entitled "Minyari Dome 2017 Phase 1 Exploration Programme Commences" created on 13 April 2017;
- Report entitled "Minyari Dome Positive Metallurgical Test Work Results" created on 13 June 2017;
- Report entitled "High-Grade Gold Intersected at North Telfer Project Revised" created on 21 June 2017;
- Report entitled "Drilling Extends High-Grade Gold Mineralisation at WACA" created on 25 July 2017;
- Report entitled "Antipa Secures High-Grade Chicken Ranch Deposit" created on 2 August 2017;
- Report entitled "High-Grade Gold Mineralisation Strike Extension at Minyari Deposit" created on 4 August 2017;
- Report entitled "Minyari Dome Phase 1 Final Assay Results" created on 31 August 2017;
- Report entitled "Minyari/WACA Deposits Maiden Mineral Resource" created on 16 November 2017;
- Report entitled "Calibre Deposit Mineral Resource Update" created on 17 November 2017;
- Report entitled "Air Core Programme Highlights Minyari and WACA Deposit" created on 5 December 2017;
- Report entitled "Minyari Dome 2017 Air Core Drilling Results" created on 29 January 2018; and
- Report entitled "Tim's Dome 2017 Air Core Drilling Results" created on 31 January 2018;
- Report entitled "Citadel Project 2018 Exploration Programme" created on 27 March 2018;
- Report entitled "Antipa to Commence Major Exploration Programme" created on 1 June 2018;
- Report entitled "Major Exploration Programme Commences" created on 25 June 2018;
- Report entitled "2018 Exploration Programme Update" created on 16 July 2018;
- Report entitled "Minyari Dome Initial Drill Results" created on 1 August 2018;
- Report entitled "2018-19 Exploration Programme Overview and Update August" created on 15 August 2018;
- Report entitled "Minyari Dome Excellent Metallurgical Test-work Results" created on 27 August 2018;
- Report entitled "Minyari Dome Initial Drill Results" created on 1 August 2018; and
- Report entitled "Thick High-grade Copper Mineralisation Intersected" created on 2 October 2018.

All of which are available to view on www.antipaminerals.com.au and www.asx.com.au. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements.

Forward-Looking Statements:

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Antipa Mineral Ltd's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward-looking statements. Although Antipa Minerals Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Table 1a: Chicken Ranch Air Core and Reverse Circulation 2018 Drill Hole Key Assay Results: Gold-Silver

Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Silver (g/t)
18CRA0138	36.0	44.0	8.0	0.11	3.86
18CRA0139	0.0	6.0	6.0	0.00	1.03
18CRA0155	18.0	22.0	4.0	0.00	6.59
18CRA0156	20.0	21.0	1.0	0.01	2.04
18CRA0156	44.0	50.0	6.0	0.80	
18CRA0167	18.0	26.0	8.0	0.44	
18CRA0168	26.0	30.0	4.0	0.04	1.68
18CRA0169	46.0	50.0	4.0	0.58	
18CRA0174	14.0	18.0	4.0	0.66	
18CRA0176	38.0	42.0	4.0	0.53	
18CRA0193	0.0	2.0	2.0	0.54	
18CRC0001	47.0	60.0	13.0	1.43	
including	47.0	48.0	1.0	3.72	
including	53.0	54.0	1.0	6.64	
including	59.0	60.0	1.0	3.15	
18CRC0002	49.0	52.0	3.0	1.32	
18CRC0003	15.0	20.0	5.0	0.95	
including	15.0	16.0	1.0	2.10	
18CRC0003	32.0	36.0	4.0	1.02	
including	35.0	36.0	1.0	2.69	
18CRC0004	66.0	67.0	1.0	2.62	
18CRC0005	62.0	63.0	1.0	0.87	
18CRC0005	85.0	87.0	2.0	1.22	
18CRC0005	108.0	110.0	2.0	0.64	
18CRC0006	135.0	136.0	1.0	0.63	
18CRC0007	83.0	84.0	1.0	0.71	
18CRC0007	118.0	119.0	1.0	0.66	
18CRC0007	126.0	128.0	2.0	0.69	
18CRC0007	135.0	136.0	1.0	0.62	
18CRC0007	198.0	199.0	1.0	1.73	
18CRC0009	52.0	53.0	1.0	3.58	
18CRC0010	97.0	98.0	1.0	0.83	
18CRC0010	100.0	101.0	1.0	1.06	
18CRC0011	27.0	29.0	2.0	2.77	
including	27.0	28.0	1.0	4.53	
18CRC0011	63.0	66.0	3.0	4.05	
including	63.0	64.0	1.0	7.88	
18CRC0012	36.0	37.0	1.0	2.12	
18CRC0012	50.0	59.0	9.0	0.52	
18CRC0012	69.0	70.0	1.0	1.09	
18CRC0013	64.0	68.0	4.0	1.66	
18CRC0014	80.0	81.0	1.0	0.99	
18CRC0016	28.0	32.0	4.0	0.49	

Table 1b: Minyari Dome 2018 Reverse Circulation Drill Hole Key Assay Results: Gold-Copper-Silver-Cobalt (i.e. ≥ 1.0m with Au ≥ 0.4 g/t and/or Cu ≥ 1,000ppm and/or Co ≥ 300ppm and/or Ag ≥ 1.0 g/t)

Hole ID	Deposit	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)	Silver (g/t)	Cobalt (ppm)
18MYC0171	Gonzo	213.0	216.0	3.0	0.10	0.36	0.22	0.02
	including	214.0	215.0	1.0	0.18	0.78	2.24	0.04
18MYC0171	Gonzo	236.0	237.0	1.0	0.03	0.18	0.57	0.01
18MYC0174	Minyari North	104.0	105.0	1.0	1.47	0.02	0.05	0.00
18MYC0174	Minyari North	143.0	156.0	13.0	0.03	0.05	0.10	0.00
18MYC0176	Minyari North	60.0	64.0	4.0	1.02	0.04	0.14	0.01
18MYC0176	Minyari North	74.0	76.0	2.0	0.07	0.06	0.05	0.07
18MYC0177	-	84.0	88.0	4.0	0.01	0.01	1.31	0.00
18MYC0179	-	80.0	84.0	4.0	0.00	0.00	1.77	0.00
18MYC0183	Judes West	39.0	40.0	1.0	0.41	0.03	0.01	0.00

Notes (Intersection Tables above): Table 1 Intersections are composited from individual assays using the following criteria:

Intersection Interval = Nominal cut-off grade scenarios:

• \geq 0.4 g/t gold which also satisfy a minimum down-hole interval of 1.0m; and/or

- \geq 1.0 g/t silver which also satisfy a minimum down-hole interval of 1.0m; and/or
- $\geq 0.1\%$ copper which also satisfy a minimum down-hole interval of 1.0m; and/or
- \geq 0.03% cobalt which also satisfy a minimum down-hole interval of 1.0m.
- NB: In some instances, zones grading less than the cut-off grade/s have been included in calculating composites or to highlight mineralisation trends.
- NB: For the purpose of highlighting significant (generally isolated) results some intersections may be included in this Table which do not satisfy the criteria above.
- No top-cutting has been applied to assay results for gold, copper, cobalt or silver;
 * Unless specified otherwise where a 27 g/t gold top-cut has been applied.
- Intersections are down hole lengths, true widths not known with certainty.

Table 2a: Chicken Ranch – 2018 Air Core Drill Hole Collar Locations (MGA Zone 51/GDA 94)

Hole ID	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
18CRA0001	Chicken Ranch	7,612,145	424,068	265	51	188.2	-60	Received
18CRA0002	Chicken Ranch	7,612,140	424,096	264	50	33.2	-60	Received
18CRA0003	Chicken Ranch	7,612,090	424,058	267	50	33.2	-60	Received
18CRA0004	Chicken Ranch	7,612,070	424,044	268	50	33.2	-60	Received
18CRA0005	Chicken Ranch	7,612,050	424,029	268	50	33.2	-60	Received
18CRA0006	Chicken Ranch	7,612,076	424,141	265	50	33.2	-60	Received
18CRA0007	Chicken Ranch	7,612,056	424,126	263	50	33.2	-60	Received
18CRA0008	Chicken Ranch	7,612,036	424,111	263	50	33.2	-60	Received
18CRA0009	Chicken Ranch	7,612,015	424,097	266	50	33.2	-60	Received
18CRA0010	Chicken Ranch	7,612,086	424,211	264	70	33.2	-60	Received
18CRA0011	Chicken Ranch	7,612,066	424,196	266	70	33.2	-60	Received
18CRA0012	Chicken Ranch	7,612,046	424,181	265	70	33.2	-60	Received
18CRA0013	Chicken Ranch	7,612,026	424,166	265	70	33.2	-60	Received
18CRA0014	Chicken Ranch	7,612,006	424,152	265	50	33.2	-60	Received
18CRA0015	Chicken Ranch	7,612,027	424,291	264	70	33.2	-60	Received
18CRA0016	Chicken Ranch	7,612,007	424,277	264	70	33.2	-60	Received
18CRA0017	Chicken Ranch	7,611,987	424,262	265	70	33.2	-60	Received
18CRA0017	Chicken Ranch	7,611,967	424,247	265	70	33.2	-60	Received
18CRA0019	Chicken Ranch	7,611,946	424,232	265	50	33.2	-60	Received
18CRA0019	Chicken Ranch	7,611,940	424,232	264	50	33.2	-60	Received
18CRA0020	Chicken Ranch	7,611,937	424,332	264	50	33.2	-60	Received
18CRA0021	Chicken Ranch	7,611,977	424,317	265	50	33.2	-60	Received
18CRA0022	Chicken Ranch	7,611,937	424,302	265	50	33.2	-60	Received
	Chicken Ranch		•					
18CRA0024	Chicken Ranch	7,611,917	424,272 424,387	265 263	50 50	33.2 33.2	-60 -60	Received
18CRA0025		7,611,988	•					Received
18CRA0026	Chicken Ranch	7,611,967	424,372	263	50	33.2	-60	Received
18CRA0027	Chicken Ranch	7,611,947	424,357	263	50	33.2	-60	Received
18CRA0028	Chicken Ranch	7,611,927	424,342	262	50	33.2	-60	Received
18CRA0029	Chicken Ranch	7,611,887	424,312	265	50	33.2	-60	Received
18CRA0030	Chicken Ranch	7,611,938	424,412	265	50	213.2	-60	Received
18CRA0031	Chicken Ranch	7,611,918	424,397	264	50	213.2	-60	Received
18CRA0032	Chicken Ranch	7,611,898	424,382	267	50	33.2	-60	Received
18CRA0033	Chicken Ranch	7,611,908	424,452	264	50	33.2	-60	Received
18CRA0034	Chicken Ranch	7,611,888	424,437	264	50	33.2	-60	Received
18CRA0035	Chicken Ranch	7,611,868	424,423	264	50	33.2	-60	Received
18CRA0036	Chicken Ranch	7,611,899	424,507	263	50	33.2	-60	Received
18CRA0037	Chicken Ranch	7,611,878	424,493	263	50	33.2	-60	Received
18CRA0038	Chicken Ranch	7,611,858	424,478	262	50	33.2	-60	Received
18CRA0039	Chicken Ranch	7,611,838	424,463	260	50	33.2	-60	Received
18CRA0040	Chicken Ranch	7,611,869	424,548	263	50	33.2	-60	Received
18CRA0041	Chicken Ranch	7,611,849	424,533	263	50	33.2	-60	Received
18CRA0042	Chicken Ranch	7,611,829	424,518	261	50	33.2	-60	Received
18CRA0043	Chicken Ranch	7,611,859	424,603	263	50	33.2	-60	Received
18CRA0044	Chicken Ranch	7,611,839	424,588	262	50	33.2	-60	Received
18CRA0045	Chicken Ranch	7,611,819	424,573	262	50	33.2	-60	Received
18CRA0046	Chicken Ranch	7,611,789	424,551	262	70	33.2	-60	Received
18CRA0047	Chicken Ranch	7,611,830	424,643	264	50	33.2	-60	Received
18CRA0048	Chicken Ranch	7,611,809	424,628	265	50	33.2	-60	Received
18CRA0049	Chicken Ranch	7,611,789	424,613	262	50	33.2	-60	Received
18CRA0050	Chicken Ranch	7,611,749	424,584	266	70	33.2	-60	Received
18CRA0051	Chicken Ranch	7,611,800	424,683	267	50	33.2	-60	Received
18CRA0052	Chicken Ranch	7,611,780	424,668	263	50	33.2	-60	Received
18CRA0053	Chicken Ranch	7,611,760	424,653	265	50	33.2	-60	Received

Hole ID	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Statu
18CRA0054	Chicken Ranch	7,611,739	424,639	265	50	33.2	-60	Received
L8CRA0055	Chicken Ranch	7,611,719	424,624	266	50	33.2	-60	Received
.8CRA0056	Chicken Ranch	7,611,730	424,694	260	50	33.2	-60	Received
8CRA0057	Chicken Ranch	7,611,710	424,679	262	50	33.2	-60	Received
8CRA0058	Chicken Ranch	7,611,690	424,664	264	50	33.2	-60	Received
8CRA0059	Chicken Ranch	7,611,665	424,739	263	50	33.2	-60	Received
8CRA0060	Chicken Ranch	7,611,615	424,702	265	50	33.2	-60	Received
8CRA0061	Chicken Ranch	7,611,605	424,757	265	50	33.2	-60	Received
8CRA0062	Chicken Ranch	7,612,185	424,035	262	50	33.2	-60	Received
8CRA0063	Chicken Ranch	7,612,155	424,075	263	50	33.2	-60	Received
8CRA0064	Chicken Ranch	7,612,156	424,138	266	50	33.2	-60	Received
8CRA0065	Chicken Ranch	7,612,131	424,151	265	50	33.2	-60	Received
8CRA0066	Chicken Ranch	7,612,096	424,156	265	50	33.2	-60	Received
8CRA0067	Chicken Ranch	7,612,116	424,171	266	50	33.2	-60	Received
8CRA0068	Chicken Ranch	7,612,136	424,186	264	50	33.2	-60	Received
8CRA0069	Chicken Ranch	7,612,081	424,176	266	50	33.2	-60	Received
8CRA0070	Chicken Ranch	7,612,101	424,191	266	50	33.2	-60	Received
8CRA0071	Chicken Ranch	7,612,410	423,984	264	50	33.2	-60	Received
8CRA0072	Chicken Ranch	7,612,389	423,969	263	50	33.2	-60	Received
8CRA0073	Chicken Ranch	7,612,369	423,954	264	50	33.2	-60	Received
8CRA0073	Chicken Ranch	7,612,349	423,939	264	50	33.2	-60	Received
8CRA0074	Chicken Ranch	7,612,349	423,939	263	50	33.2	-60	Received
8CRA0075	Chicken Ranch	7,612,329	423,924	263	50	33.2	-60	Received
		7,612,309		263	50	33.2	-60	
8CRA0077	Chicken Ranch		423,894					Received
8CRA0078	Chicken Ranch	7,612,269	423,880	264	50	33.2	-60	Received
8CRA0079	Chicken Ranch	7,612,249	423,865	264	50	33.2	-60	Received
8CRA0080	Chicken Ranch	7,612,229	423,850	269	50	33.2	-60	Received
8CRA0081	Chicken Ranch	7,612,380	424,024	263	50	33.2	-60	Received
8CRA0082	Chicken Ranch	7,612,360	424,009	264	50	33.2	-60	Received
8CRA0083	Chicken Ranch	7,612,340	423,994	264	50	33.2	-60	Received
8CRA0084	Chicken Ranch	7,612,320	423,979	265	50	33.2	-60	Received
8CRA0085	Chicken Ranch	7,612,299	423,964	265	50	33.2	-60	Received
8CRA0086	Chicken Ranch	7,612,279	423,949	265	50	33.2	-60	Received
8CRA0087	Chicken Ranch	7,612,259	423,935	265	50	33.2	-60	Received
8CRA0088	Chicken Ranch	7,612,239	423,920	266	50	33.2	-60	Received
.8CRA0089	Chicken Ranch	7,612,219	423,905	266	50	33.2	-60	Received
.8CRA0090	Chicken Ranch	7,612,199	423,890	266	50	33.2	-60	Received
8CRA0091	Chicken Ranch	7,611,535	424,705	264	50	213.2	-60	Received
8CRA0092	Chicken Ranch	7,611,555	424,720	266	50	213.2	-60	Received
L8CRA0093	Chicken Ranch	7,611,565	424,665	266	50	213.2	-60	Received
L8CRA0094	Chicken Ranch	7,611,585	424,680	266	50	213.2	-60	Received
.8CRA0095	Chicken Ranch	7,611,580	424,645	266	50	213.2	-60	Received
L8CRA0096	Chicken Ranch	7,611,600	424,660	264	50	213.2	-60	Received
L8CRA0097	Chicken Ranch	7,611,620	424,675	264	50	213.2	-60	Received
.8CRA0098	Chicken Ranch	7,611,609	424,605	271	50	213.2	-60	Received
.8CRA0099	Chicken Ranch	7,611,609	424,603	271	50	213.2	-60	Received
	Chicken Ranch	7,611,629	•					
.8CRA0100			424,649	266	70 50	213.2	-60 60	Received
8CRA0101	Chicken Ranch	7,611,639	424,564	270	50	213.2	-60	Received
8CRA0102	Chicken Ranch	7,611,659	424,579	271	50	213.2	-60	Received
8CRA0103	Chicken Ranch	7,611,679	424,594	271	50	213.2	-60	Received
8CRA0104	Chicken Ranch	7,611,669	424,524	267	50	213.2	-60	Received
8CRA0105	Chicken Ranch	7,611,689	424,539	267	50	213.2	-60	Received
8CRA0106	Chicken Ranch	7,611,709	424,554	268	50	213.2	-60	Received
8CRA0107	Chicken Ranch	7,611,698	424,484	268	50	213.2	-60	Received
8CRA0108	Chicken Ranch	7,611,718	424,499	268	50	213.2	-60	Received
.8CRA0109	Chicken Ranch	7,611,739	424,514	265	50	213.2	-60	Received
.8CRA0110	Chicken Ranch	7,611,728	424,444	263	50	213.2	-60	Received
8CRA0111	Chicken Ranch	7,611,748	424,459	264	50	213.2	-60	Received
.8CRA0112	Chicken Ranch	7,611,768	424,473	265	50	213.2	-60	Received
8CRA0113	Chicken Ranch	7,612,079	424,516	266	50	33.2	-60	Received
8CRA0114	Chicken Ranch	7,612,058	424,501	267	50	33.2	-60	Received
.8CRA0115	Chicken Ranch	7,612,038	424,486	267	50	33.2	-60	Received
8CRA0116	Chicken Ranch	7,612,049	424,556	267	50	33.2	-60	Received
.8CRA0117	Chicken Ranch	7,612,029	424,541	265	50	33.2	-60	Received
8CRA0118	Chicken Ranch	7,612,009	424,527	265	50	33.2	-60	Received
L8CRA0119	Chicken Ranch	7,612,275	424,040	264	50	33.2	-60	Received
8CRA0120	Chicken Ranch	7,612,255	424,025	264	50	33.2	-60	Received
18CRA0120	Chicken Ranch	7,612,233	424,023	265	50	33.2	-60	Received
18CRA0121	Chicken Ranch	7,612,306	424,124	265	50	33.2	-60	Received
CUMUIZZ	CHICKEH RAHCH	7,612,265	424,109	264	50	33.2	-60	vereinen

Hole ID	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Statu
18CRA0124	Chicken Ranch	7,612,245	424,080	263	50	33.2	-60	Received
18CRA0125	Chicken Ranch	7,612,225	424,065	263	50	33.2	-60	Received
L8CRA0126	Chicken Ranch	7,612,335	424,084	265	50	33.2	-60	Received
L8CRA0127	Chicken Ranch	7,612,315	424,069	265	50	33.2	-60	Received
L8CRA0128	Chicken Ranch	7,612,295	424,054	265	50	33.2	-60	Received
L8CRA0129	Chicken Ranch	7,612,276	424,165	264	50	33.2	-60	Received
18CRA0130	Chicken Ranch	7,612,256	424,150	264	50	33.2	-60	Received
18CRA0131	Chicken Ranch	7,612,236	424,135	265	50	33.2	-60	Received
18CRA0132	Chicken Ranch	7,612,216	424,120	265	50	33.2	-60	Received
18CRA0133	Chicken Ranch	7,612,195	424,105	263	50	33.2	-60	Received
18CRA0134	Chicken Ranch	7,612,115	424,046	268	50	33.2	-60	Received
18CRA0135	Chicken Ranch	7,612,226	424,190	262	50	33.2	-60	Received
18CRA0136	Chicken Ranch	7,612,206	424,175	262	50	33.2	-60	Received
18CRA0137	Chicken Ranch	7,612,186	424,160	262	50	33.2	-60	Received
18CRA0138	Chicken Ranch	7,612,207	424,300	264	50	33.2	-60	Received
18CRA0139	Chicken Ranch	7,612,187	424,285	264	50	33.2	-60	Received
18CRA0140	Chicken Ranch	7,612,167	424,270	263	50	33.2	-60	Received
18CRA0141	Chicken Ranch	7,612,147	424,256	262	50	33.2	-60	Received
18CRA0142	Chicken Ranch	7,612,177	424,340	263	50	33.2	-60	Received
18CRA0143	Chicken Ranch	7,612,157	424,325	263	50	33.2	-60	Received
18CRA0144	Chicken Ranch	7,612,137	424,311	262	50	33.2	-60	Received
18CRA0145	Chicken Ranch	7,612,148	424,381	261	50	33.2	-60	Received
18CRA0146	Chicken Ranch	7,612,127	424,366	263	50	33.2	-60	Received
18CRA0147	Chicken Ranch	7,612,107	424,351	262	50	33.2	-60	Received
18CRA0148	Chicken Ranch	7,612,078	424,391	263	50	33.2	-60	Received
18CRA0149	Chicken Ranch	7,612,098	424,406	263	50	33.2	-60	Received
18CRA0151	Chicken Ranch	7,611,600	424,722	265	50	33.2	-60	Received
18CRA0152	Chicken Ranch	7,611,580	424,707	266	50	33.2	-60	Received
18CRA0153	Chicken Ranch	7,611,570	424,700	266	50	213.2	-60	Received
18CRA0154	Chicken Ranch	7,611,550	424,685	266	50	213.2	-60	Received
18CRA0155	Chicken Ranch	7,611,585	424,742	265	50	33.2	-60	Received
18CRA0156	Chicken Ranch	7,611,565	424,727	266	50	33.2	-60	Received
18CRA0157	Chicken Ranch	7,611,576	424,797	265	50	33.2	-60	Received
18CRA0158	Chicken Ranch	7,611,556	424,783	266	50	33.2	-60	Received
18CRA0159	Chicken Ranch	7,611,535	424,768	264	50	33.2	-60	Received
18CRA0160	Chicken Ranch	7,611,561	424,817	263	50	33.2	-60	Received
18CRA0161	Chicken Ranch	7,611,521	424,788	264	50	33.2	-60	Received
18CRA0162	Chicken Ranch	7,611,490	424,766	264	50	213.2	-60	Received
18CRA0163	Chicken Ranch	7,611,511	424,780	264	50	213.2	-60	Received
18CRA0164	Chicken Ranch	7,611,817	424,323	266	50	213.2	-60	Received
18CRA0165	Chicken Ranch	7,611,837	424,338	266	50	213.2	-60	Received
18CRA0166	Chicken Ranch	7,611,847	424,283	264	50	213.2	-60	Received
18CRA0167	Chicken Ranch	7,611,867	424,298	264	50	213.2	-60	Received
18CRA0168	Chicken Ranch	7,611,876	424,243	264	50	213.2	-60	Received
18CRA0169	Chicken Ranch	7,611,897	424,257	264	50	213.2	-60	Received
18CRA0170	Chicken Ranch	7,611,916	424,147	262	50	213.2	-60	Received
18CRA0171	Chicken Ranch	7,611,936	424,162	262	50	213.2	-60	Received
18CRA0172	Chicken Ranch	7,611,956	424,177	265	50	213.2	-60	Received
18CRA0173	Chicken Ranch	7,611,945	424,107	268	50	213.2	-60	Received
18CRA0174	Chicken Ranch	7,611,966	424,122	264	50	213.2	-60	Received
18CRA0175	Chicken Ranch	7,611,986	424,137	264	50	213.2	-60	Received
18CRA0176	Chicken Ranch	7,611,975	424,067	266	50	213.2	-60	Received
18CRA0177	Chicken Ranch	7,611,995	424,082	268	50	213.2	-60	Received
18CRA0178	Chicken Ranch	7,612,015	424,097	266	50	213.2	-60	Received
18CRA0179	Chicken Ranch	7,612,015	424,034	262	50	213.2	-60	Received
18CRA0180	Chicken Ranch	7,612,035	423,986	268	50	213.2	-60	Received
18CRA0181	Chicken Ranch	7,612,055	424,001	268	50	33.2	-60	Received
18CRA0182	Chicken Ranch	7,612,501	424,113	267	50	213.2	-60	Received
18CRA0183	Chicken Ranch	7,612,521	424,128	267	50	213.2	-60	Received
18CRA0184	Chicken Ranch	7,612,541	424,143	267	80	213.2	-60	Received
18CRA0185	Chicken Ranch	7,612,441	424,193	265	50	213.2	-60	Received
18CRA0186	Chicken Ranch	7,612,461	424,208	264	50	213.2	-60	Received
18CRA0187	Chicken Ranch	7,612,481	424,223	265	80	213.2	-60	Received
18CRA0188	Chicken Ranch	7,612,402	424,289	263	50	213.2	-60	Received
18CRA0189	Chicken Ranch	7,612,422	424,303	263	80	213.2	-60	Received
18CRA0190	Chicken Ranch	7,612,044	423,931	265	50	213.2	-60	Received
18CRA0191	Chicken Ranch	7,612,044	423,946	268	50	213.2	-60	Received
18CRA0191	Chicken Ranch	7,612,084	423,940	268	50	213.2	-60	Received
18CRA0192	Chicken Ranch	7,612,084	423,901	264	50	213.2	-60	Received
	CHICKEH NAHUH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	747,143	204	50	213.2	-00	Neceivea

Hole ID	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
18CRWB01	Water Bore	7,612,109	424,216	264	72	0.0	-90	Received
18CRWB02	Water Bore	7,612,151	424,363	263	72	0.0	-90	Received

Table 2b: Chicken Ranch – 2018 RC Drill Hole Collar Locations (MGA Zone 51/GDA 94)

Hole ID	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
18CRC0001	Chicken Ranch	7,612,180	424,025	263	60	215.0	-60	Received
18CRC0002	Chicken Ranch	7,612,190	424,040	262	90	215.0	-60	Received
18CRC0003	Chicken Ranch	7,612,170	424,050	263	60	215.0	-60	Received
18CRC0004	Chicken Ranch	7,612,185	424,055	262	90	215.0	-60	Received
18CRC0005	Chicken Ranch	7,612,133	424,000	265	123	35.0	-60	Received
18CRC0006	Chicken Ranch	7,612,112	423,985	268	201	35.0	-60	Received
18CRC0007	Chicken Ranch	7,612,076	423,999	268	201	35.0	-60	Received
18CRC0008	Chicken Ranch	7,612,079	424,023	268	171	35.0	-60	Received
18CRC0009	Chicken Ranch	7,612,093	424,089	265	183	35.0	-60	Received
18CRC0010	Chicken Ranch	7,612,073	424,074	267	123	35.0	-60	Received
18CRC0011	Chicken Ranch	7,612,048	424,057	267	183	35.0	-60	Received
18CRC0012	Chicken Ranch	7,612,164	423,958	267	153	35.0	-55	Received
18CRC0013	Chicken Ranch	7,612,063	424,246	267	171	215.0	-60	Received
18CRC0014	Chicken Ranch	7,612,040	424,267	261	81	215.0	-60	Received
18CRC0015	Chicken Ranch	7,612,030	424,290	267	123	215.0	-60	Received
18CRC0016	Chicken Ranch	7,611,943	424,433	267	45	215.0	-60	Received
18CRC0017	Chicken Ranch	7,611,782	424,701	262	40	215.0	-60	Pending
18CRC0018	Chicken Ranch	7,611,802	424,715	262	99	215.0	-60	Pending
18CRC0019	Chicken Ranch	7,611,897	424,631	263	153	215.0	-55	Pending
18CRC0020	Chicken Ranch	7,611,988	424,465	266	183	215.0	-60	Pending

Table 2c: Minyari Dome – 2018 RC Drill Hole Collar Locations (MGA Zone 51/GDA 94)

Hole ID	Deposit / Target Area		Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
18MYC0140	Minyari North	101,100	7,635,763	422,784	280	99	58.2	-55	Received
18MYC0141	Minyari North	101,100	7,635,761	422,780	280	201	58.2	-55	Received
18MYC0142	Minyari West	100,800	7,635,307	422,612	277	153	58.2	-55	Received
18MYC0143	Minyari South	100,350	7,635,019	423,013	278	153	57.2	-57	Received
18MYC0144	Minyari South	100,350	7,634,980	422,950	278	147	58.2	-55	Received
18MYC0145	Minyari South	100,300	7,634,972	423,029	277	153	58.2	-55	Received
18MYC0146	Minyari South	100,300	7,634,918	422,943	280	153	58.2	-55	Received
18MYC0147	Minyari South	100,300	7,634,863	422,859	279	255	58.2	-55	Received
18MYC0148	Minyari South	100,300	7,634,971	423,023	277	183	238.2	-60	Received
18MYC0149	Minyari South	100,250	7,634,887	422,990	280	99	238.2	-60	Received
18MYC0150	Minyari North	101,000	7,635,698	422,872	275	195	58.2	-55	Received
18MYC0151	Minyari North	101,000	7,635,645	422,785	276	261	58.2	-55	Received
18MYC0152	Minyari North	101,000	7,635,593	422,700	276	297	58.2	-55	Received
18MYC0153	Minyari West	100,800	7,635,266	422,552	277	165	58.2	-55	Received
18MYC0154	WACA South	99,550	7,634,203	423,211	277	171	58.2	-55	Received
18MYC0155	WACA South	99,550	7,634,159	423,127	279	159	58.2	-55	Received
18MYC0156	WACA South	99,600	7,634,248	423,192	277	165	58.2	-55	Received
18MYC0157	WACA South	99,200	7,633,983	423,522	277	153	58.2	-55	Received
18MYC0158	WACA South	99,400	7,634,044	423,236	281	153	58.2	-55	Received
18MYC0159	WACA East	100,000	7,634,530	422,888	283	338	58.2	-55	Received
18MYC0160	Minyari South	100,350	7,634,940	422,886	282	159	58.2	-55	Received
18MYC0161	Minyari South	100,400	7,634,975	422,847	279	207	58.2	-55	Received
18MYC0162	Fozzie	100,700	7,634,821	422,030	273	153	58.2	-55	Received
18MYC0163	WACA North	100,350	7,634,716	422,525	280	153	58.2	-55	Received
18MYC0164	Judes	102,750	7,637,050	421,735	272	105	58.2	-60	Received
18MYC0165	Judes	102,750	7,637,023	421,692	271	117	58.2	-60	Received
18MYC0166	Judes	102,750	7,636,997	421,650	270	147	58.2	-60	Received
18MYC0167	Judes	102,750	7,636,971	421,607	265	153	58.2	-60	Received
18MYC0168	Minyari South	100,250	7,634,821	422,883	281	153	58.2	-55	Received
18MYC0169	Minyari South	100,400	7,635,054	422,974	277	147	58.2	-55	Received
18MYC0170	Minyari East	100,590	7,635,426	423,214	282	147	58.2	-55	Received

Hole ID	Deposit / Target Area		Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
18MYC0171	Gonzo	102,200	7,636,256	421,498	272	249	58.2	-55	Received
18MYC0172	Minyari North	101,300	7,636,172	423,068	282	147	58.2	-55	Received
18MYC0173	Minyari North	101,300	7,636,029	422,839	278	153	58.2	-55	Received
18MYC0174	Minyari North	101,300	7,635,977	422,754	276	165	58.2	-55	Received
18MYC0175	Minyari North	101,500	7,636,078	422,538	273	105	58.2	-55	Received
18MYC0176	Minyari North	101,500	7,636,025	422,453	278	105	58.2	-55	Received
18MYC0177	-	102,400	7,636,647	421,749	268	153	58.2	-55	Received
18MYC0178	-	102,400	7,636,541	421,580	272	153	58.2	-55	Received
18MYC0179	-	102,400	7,636,436	421,410	270	153	58.2	-55	Received
18MYC0180	AEM	107,600	7,640,087	417,436	263	201	58.2	-60	Received
18MYC0181	AEM	107,600	7,639,992	417,283	262	201	58.2	-55	Received
18MYC0182	Judes West	102,940	7,636,868	421,083	265	105	58.2	-55	Received
18MYC0183	Judes West	102,940	7,636,842	421,040	269	105	58.2	-55	Received
18MYC0184	Judes West	102,940	7,636,816	420,998	270	105	58.2	-55	Received

CHICKEN RANCH AREA – 2018 Air Core and Reverse Circulation Drill Hole Sampling

JORC Code 2012 Edition: Table 1 - Section 1 Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	NOTE: For detailed descriptions of the JORC Criteria for the various Chicken Ranch region exploration programmes completed between 1970 to 2016, some of which are referred to in this public disclosure, refer to the Company's public disclosure (i.e. ASX Website www.asx.com.au and Antipa Minerals Ltd Website https://antipaminerals.com.au/) report entitled "Antipa Secures High Grade Chicken Ranch Deposit" created on 2 August 2017. 2018 (July-August) Air Core (AC) Drilling Prospects/targets have been sampled by 195 AC drill holes, totaling 10,105 m, with an average drill hole depth of 51.8 m. Assays have been received for all 2018 AC drill holes. AC drill holes were generally drilled on a nominal 25 m (along line) and 50 m across line infill and trend-extensional basis only, testing geological and geochemical targets. Drill hole locations for all 2018 holes are tabulated in the body of this report. 2018 (August-October) Reverse Circulation Core (RC) Drilling Prospects/targets have been sampled by 20 Reverse Circulation (RC) drill holes, totaling 2,533 m, with an average drill hole depth of 126.7 m. To date assays have been received for 16 of the 2018 RC drill holes. RC drill holes were drilled within, below and along strike of known mineralisation, testing geological and geochemical targets. Drill hole locations for all 2018 holes are tabulated in the body of this report. AC Sampling AC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 10 or 20. Compositing AC samples in lengths between 2 to 4 m was undertaken via combining 'Spear' samples of the 1.0 m intervals to generate a 2 kg (average) sample. Areas of anomalous portable XRF Device (Niton) ('pXRF') results or zones of encouraging geological observations were sampled as single metres. All samples are
		 RC Sampling RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. RC samples were drilled using a 140mm diameter face sampling hammer and sampled on intervals of 1.0m using a rig mounted cone splitter from which a 2 kg (average) sample which was pulverised at

Criteria	JORC Code explanation	Commentary
		 the laboratory to produce material for assay. Compositing of unmineralised regions (guided by Niton portable XRF field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Air Core Circulation Drilling AC Drilling was undertaken with a Bostech Drillboss 200 4WD truck mounted rig. The rig has a depth capacity of approximately 150 m with an on-board compressor producing 600 cfm at 250 psi. All drill holes were completed using an 85 mm AC blade. If hard drilling conditions are encountered a 97 – 102 mm RAB hammer with a crossover sub (not face sampling) is utilised; however, this drilling technique was not required at Chicken Ranch. Drill holes were directed towards local grid east (135 holes), west (57 holes) and southwest (one hole), with an inclination angle of -60°.
		Reverse Circulation Drilling
		 RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. RC samples were drilled using a 140mm diameter face sampling hammer and sampled on intervals of 1.0m using a rig mounted cone splitter from which a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay. Compositing of unmineralised regions (guided by Niton portable XRF field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay.
Drill sample	Method of recording and assessing core and chip sample	AC Drill Samples
recovery	 recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC sample recovery and sample quality was recorded via visual estimation of sample volume and condition of the drill spoils. AC sample recovery typically ranges from 90 to 100%, with only very occasional samples with less than 70% recovery.
		 AC sample recovery was maximized by endeavoring to maintain a dry drilling conditions as much as practicable; the AC samples were almost exclusively dry.
		 Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery.
		RC Drill Samples
		 RC sample recovery was recorded via visual estimation of sample volume. RC sample recovery typically ranges from 90 to 100%, with only very occasional samples with less than 70% recovery.
		 RC sample recovery was maximized by endeavoring to maintain a dry drilling conditions as much as practicable; the RC samples were almost exclusively dry.

Criteria	JORC Code explanation	Commentary
		 All samples were split on a 1m interval using a rig-mounted cone splitter. Adjustments were made to ensure representative 2 to 3kg sample volumes were collected. Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery. RC sample recovery and sample quality was recorded via visual estimation of sample volume and condition of the drill spoils. RC results are generated for the purpose of exploration and potentially for Mineral Resource estimations.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 AC Drill Logging Geological logging of 100% of all AC sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. Logging includes both qualitative and quantitative components. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master Access SQL database. Selected AC sample intervals were measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. AC samples are generally analyzed in the field using a pXRF for the purposes of geochemical and lithological interpretation and the selection of sampling intervals. RC Drill Logging All RC material is logged. Logging includes both qualitative and quantitative components. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master Access SQL database. Geological logging of 100% of all RC sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. RC sample intervals were routinely measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. RC samples are generally analyzed in the field using a Portable XRF Device (Niton) for the purposes of geochemical and lithological interpretation and the selection of sampling intervals.
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 10 or 20.

Criteria	JORC Code explanation	Commentary
sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Compositing AC samples of between 2 to 4 m was undertaken via combining 'Spear' samples of the intervals to generate a 2 kg (average) sample. Areas of anomalous pXRF results or anomalous geological observations were sampled as single metres. All samples are pulverised at the laboratory to produce material for assay. RC Samples RC samples for all drill holes were drilled using a 140mm diameter face sampling hammer and split on intervals of 1.0m using a rig mounted cone splitter from which a 3 kg (average) sample which was pulverised at the laboratory pulverised to produce material for assay. Compositing of unmineralised regions (guided by Portable XRF / Niton field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 3 kg (average) sample which was pulverised at the laboratory to produce material for assay. Field duplicate samples were collected for all RC drill holes. AC Sample Preparation Sample preparation of AC samples was completed at MinAnalytical Laboratories in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the AC sample down to approximately 10 mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 μm and split into a sub–sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the sulphide style of mineralisation at Chicken Ranch, the thickness and consistency of the intersections and the sampling methodology. RC Sample Preparation
Quality of assay	• The nature quality and appropriateness of the assaying and	 Sample preparation of RC samples was completed at MinAnalytical Laboratories in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the sample down to approximately 10mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 µm and split into a sub–sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the style of mineralisation at Chicken Ranch, the thickness and consistency of the intersections and the sampling methodology.
data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision 	 The sample preparation technique for both AC and/or RC samples are documented by Antipa Mineral Ltd's standard procedures documents and is in line with industry standards in sample preparation. The sample sizes are considered appropriate to represent mineralisation. Sample preparation checks for fineness were carried out by the laboratory as part of its internal procedures. AC Analytical Techniques

Criteria	JORC Code explanation	Commentary
	have been established.	 All samples were dried, crushed, pulverised and split to produce a sub–sample for a 10-gram sample which are digested and refluxed with nitric and hydrochloric ('aqua regia digest') acid suitable for weathered AC samples. Aqua regia can digest many different mineral types including most oxides, sulphides and carbonates but will not totally digest refractory or silicate minerals. Analytical methods used were both ICP–OES and ICP–MS (Au, Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Ti, U, V, W, Y, Zn and Zr). For samples which returned Au greater than 4,000 ppb Au (upper detection limit) with the aqua regia digest, a lead collection fire assay on a 50-gram sample with Atomic Absorption Spectroscopy was undertaken to determine gold content with a detection limit of 0.005ppm. Ore grade ICP–OES analysis was completed on samples returning results above upper detection limit. No geophysical tools were used to determine any element concentrations in this report. A handheld portable Niton XRF analyser (XL3t 950 GOLDD+) device is used in the field to investigate and record geochemical data for internal analysis. However, due to 'spatial' accuracy/repeatability issues this data is generally not publicly reported for drill holes, other than for specific purposes/reasons. Field QC procedures involve the use of commercial certified reference material (CRM's) for assay standards and blanks. Standards are inserted every 50 samples. The grade of the inserted standard is not revealed to the laboratory. Repeat QC samples was utilised during the AC drilling programme with nominally two to three duplicate AC field samples per drill hole. Inter laboratory cross-checks analysis programmes have not been conducted at this stage. In addition to Antipa supplied CRM's, MinAnalytical includes in each sample batch assayed certified reference mate
		 Selected anomalous samples are re-digested and analysed to confirm results. RC Sample Preparation
		 Sample preparation of RC samples was completed at MinAnalytical Laboratories in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the sample down to approximately 10mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 µm and split into a sub–sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the style of mineralisation at Chicken Ranch, the thickness and consistency of the intersections and the sampling methodology. The sample preparation technique for RC samples is documented by Antipa Mineral Ltd's standard procedures documents and is in line with industry standards in sample preparation. The sample sizes are considered appropriate to represent mineralisation.

Criteria	JORC Code explanation	Commentary
		 Sample preparation checks for fineness were carried out by the laboratory as part of its internal procedures. Analytical Techniques: A lead collection fire assay on a 50g sample with Atomic Absorption Spectroscopy undertaken to determine gold content with a detection limit of 0.005ppm. All samples were dried, crushed, pulverised and split to produce a sub-sample for a 25g sample which are digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acids ('four acid digest') suitable for silica based samples. This digest is considered to approach a total dissolution for most minerals. Analytical methods used were ICP-OES (AI, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, S, Ti, V and Zn) with selective ICP-MS (Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cs, Ga, Ge, Hf, in, La, Li, Mo, Nb, Ni, Pb, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Tl, U, W, Y and Zr). Ore grade ICP-OES analysis was completed on samples returning results above upper detection limit. No geophysical tools were used to determine any element concentrations in this report. A handheld portable Niton XRF analyser (XL3t 950 GOLDD+) device is used in the field to investigate and record geochemical data for internal analysis. However, due to 'spatial' accuracy/repeatability issues this data is generally not publicly reported for drill holes, other than for specific purposes/reasons. Field QC procedures involve the use of commercial certified reference material (CRM's) for assay standards and blanks. Standards are inserted every 25 samples. The grade of the inserted standard is not revealed to the laboratory. Field duplicates/repeat QC samples was utilised during the RC drilling programme with nominally two to three duplicate RC field samples per drill hole. Inter laboratory cross-checks analysis programmes have not been conducted at this stage. In addition to Antipa supplied CRM's, MinAnalytical includes in each sample batch assayed certified reference material
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have been visually verified by one or more alternative company personnel and/or contract employees. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master SQL database. No adjustments or calibrations have been made to any assay data collected.
Location of data	Accuracy and quality of surveys used to locate drill holes (college and down hole surveys) transhes mine workings and	• km = kilometre; m = metre; mm = millimetre.
points	(collar and down-hole surveys), trenches, mine workings and	Drill hole collar locations are surveyed using a handheld Garmin 64S GPS which has an accuracy of ± 23

Criteria	JORC Code explanation	Commentary
	other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control.	 3 m. The drilling co-ordinates are all in GDA94 MGA Zone 51 co-ordinates. Vertical AC drill holes do not require for drill rig set-up azimuth checking. Inclined AC drill holes are checked for drill rig set-up azimuth using Suunto Sighting Compass from two directions. Drill hole inclination is set by the driller using a clinometer on the drill mast and checked by the geologist prior the drilling commencing. AC drill hole down hole surveys No downhole surveys are undertaken for AC drill holes. RC drill hole down hole surveys RC downhole surveys were undertaken in-hole during drilling using a 'Reflex EZ Trac Camera' device at 30 metre intervals with a final survey at the end of the drill hole. Downhole surveys were checked by the supervising geologist for consistency. If required, readings were re-surveyed or smoothed in the database if unreliable azimuth readings were apparent. Survey details included drill hole dip (±0.25° accuracy) and drill hole azimuth (±0.35 accuracy°) Total Magnetic field and temperature. The Company has adopted and referenced one specific local grid across the Chicken Ranch area ('Chicken Ranch Grid') which is defined below. References in the text and deposit diagrams are all in this local Grid. Table 2 and Appendix 2 are in GDA94 / MGA Zone 51. Chicken Ranch Local Grid 2-Point Transformation Data: Point # 1 = Chicken Ranch Local Grid 10,000m east is 424,724.5m east in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 15,800m north is 7,611,897.1m north in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 10,000m east is 422,694.5m east in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 8,600m north is 7,613,433.2m north in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 8,600m north is 7,613,433.2m north in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 0,000m east is equal to 303° in GDA
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill lines are east-west "Chicken Ranch" local grid oriented. "Chicken Ranch" local grid drill lines are each spaced approximately 50 m apart with an average drill hole spacing on each section between 20 to 25 m. Locally (two areas) the Chicken Ranch mineralisation has been delineated in a grade-control style drill pattern consisting of 10 m x 10 m drill hole spacing format over 20 to 50 m strike lengths. The typical section spacing/drill hole distribution is considered adequate for the purpose of Mineral Resource estimation.

Criteria	JORC Code explanation	Commentary
		AC and RC drill sample compositing has been applied for the reporting of exploration results.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The location and orientation of the Chicken Ranch drilling is appropriate given the strike, dip and morphology of the mineralisation. No consistent and/or documented material sampling bias resulting from a structural orientation has been identified at Chicken Ranch at this point; however, both folding, multiple vein directions and faulting have been recorded via diamond drilling and surface mapping.
Sample security	The measures taken to ensure sample security.	 Chain of sample custody is managed by Antipa to ensure appropriate levels of sample security. Samples are stored on site and delivered by Antipa or their representatives to Port Hedland and subsequently by Toll Ipec Transport from Newman to the assay laboratory in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling techniques and procedures are regularly reviewed internally, as is the data. Consultants Snowden, during completion of the 2013 Calibre Mineral Resource estimate, undertook a desktop review of the Company's sampling techniques and data management and found them to be consistent with industry standards.

CHICKEN RANCH AREA – 2018 Air Core and Reverse Circulation Drill Hole Sampling

Section 2 – Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Tenement E45/4867 was applied for by Antipa Resources Pty Ltd on the 19th of January 2017. Multiple parties 'simultaneously' lodged applications over the area, and the decision went to a ballot before the Warden's Court in July 2017. Tenement E45/4867 was awarded in full to Antipa and was subsequently granted on the 3rd of January 2018. Antipa Minerals Ltd has a 100% interest in E45/4867 and no existing royalties or prior agreements apply. Tenement E45/4867, including the Chicken Ranch and Turkey Farm deposits, is not subject to the Citadel Project Farm-in Agreement with Rio Tinto Exploration Pty Ltd. All tenements are contained completely within land where the Martu People have been determined to hold native title rights. To the Company's knowledge no historical or environmentally sensitive sites have been identified in the area of work. Land Access and Exploration Agreements are in place with the Martu People. Antipa maintains a positive relationship with the Martu People, who are Native Title parties in the area. The tenement is in good standing and no known impediments exist.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The exploration of the Chicken Ranch area was conducted by the following major resources companies: Newmont Pty Ltd (early 1970s to 1986); Carr Boyd Minerals Limited (1973 to 1975); Geopeko Limited (JV with Carr Boyd) (1975 to 1978); Marathon Petroleum Australia Limited (1979); Western Mining Corporation Limited (WMC) (1980); Duval Mining (Australia) Limited (Carr Boyd JV with Picon Exploration Pty Ltd) (1984 to 1986); Mount Burgess Gold Mining Company N.L. (1989 to 2001); Carpentaria (MIM JV with Mount Burgess) (1990 to 1996); Normandy (JV with Mount Burgess) (1998 to 2000); Newcrest Mining Limited (2009 to 2015); Quantum Resources Limited (2012 to 2016); and Antipa Minerals Limited (2016 to current).
Geology	Deposit type, geological setting and style of mineralisation.	Chicken Ranch Tenement Area: The geology of the is dominated by a northwest trending sequence of moderate to steeply east dipping meta-sediments, including siltstone, carbonate siltstone, dolomite, and subordinate fine-grained sandstone of the Puntapunta Formation. This sequence occurs on the northeast flank of the Camp Dome complex, a regional scale doubly plunging anticline. Regional mapping undertaken by previous explorers indicates that the Chicken Ranch prospect may be related to a parasitic fold on the flank of the Camp Dome, or a separate fold structure altogether. High-grade gold with minor copper mineralisation as gossanous zones within and related to northwest trending, steeply dipping quartz veins hosted by deeply oxidized meta-sediments, including goethite pseudomorphs after massive pyrite alteration (some cubic ex-pyrite oxide pseudomorphs up to 2cm in size, similar in size to those collected in the early 1970's associated with the then outcropping Telfer gold mineralisation). The entire zone is deeply oxidized. Main zone consists of two or more northwest trending zones of mineralisation within a corridor up to 70m in width. The southwest lens of mineralisation is more persistent and has a strike length of approximately 1,300m. Several additional northwestern trending mineralisation zones to the east and west of the main zone. The Turkey Farm prospect occurs 800m west-northwest of the Chicken Ranch deposit, and gold with minor copper mineralisation within northwest trending, steeply dipping quartz ironstone veins and possible shallow (25° to 30°) east dipping zones hosted by deeply oxidized meta-sediments. The area is prospective for high-grade Telfer 'Reef Style' gold mineralisation and vein and/or stockwork style mineralisation.

Criteria	JORC Code explanation	Commentary
		 North-south striking fault zones (possible Telfer "Graben Fault" generation), appear to offset stratigraphy and mineralisation dominantly with an apparent sinistral sense which may represent simple normal displacement with east-block up / west-block down of northeasterly dipping stratigraphy.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A summary of all available information material to the understanding of the Chicken Ranch region exploration results can be found in previous Western Australia (WA) DMIRS publicly available reports. All the various technical and Chicken Ranch region exploration reports are publicly accessible via the WA DMIRS' online WAMEX system. The specific WA DMIRS WAMEX and other reports related to the exploration information the subject of this public disclosure have been referenced in previous public reports. Antipa Minerals Ltd publicly disclosed reports provide details of all exploration completed by the Company since 2017; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported aggregated intervals have been length weighted. No density or bulk density is available and so no density weighting has been applied when calculating aggregated intervals. No top-cuts to gold or copper have been applied (unless specified otherwise). A nominal 0.40 g/t gold or 0.10% copper lower cut-off grade is applied. Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals. Metal equivalence is not used in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Given the variety of drill hole types and distribution, the intersection angles for the various historic drilling generations are likely to be quite variable. The reported downhole intersections are estimated to commonly be in the range of 30% to 70% ± 10% of the true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide maps and sections (with scales) and tabulations of intercepts generated by the Company since 2017; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All significant results are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide details of all significant exploration results generated by the Company since 2017; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Zones of mineralisation and associated waste material have not been measured for their bulk density. Multi element assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulfur, lead, zinc and magnesium. Downhole 'logging' of a selection of Chicken Ranch 2018 RC drill holes using an OBI40 Optical Televiewer generated an oriented 360° image of the drill hole walls via a CCD camera recorded digital image. The OBI40 system utilised also included a North Seeking Gyro-scope to measure drill hole location/deviation, and the downhole survey also measured rock density, magnetic susceptibility, natural gamma and included a borehole caliper device for measuring drill hole diameter. The combined dataset collected via the OBI40 Optical Televiewer downhole survey data has multiple geological and geotechnical uses, including but not limited to the detection and determination of in-situ lithological, structural and mineralisation feature orientations (i.e. dip and strike), determination and orientation of fracture frequency, general ground conditions/stability, oxidation conditions, ground-water table and clarity, etc. To date the following Chicken Ranch deposit downhole 'logging' surveys have been completed:
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planned further work: Ongoing review and interpretations of the 2018 and historical Chicken Ranch and Turkey Farm exploration data; Planning and potential future execution of exploration activities to identify both depth and lateral extensions to potential high-grade gold mineralisation; Full geological interpretation, 3D modelling and subsequent Mineral Resource estimation. All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.

MINYARI DOME AREA – 2018 Reverse Circulation Drilling Programme

JORC Code 2012 Edition: Table 1 - Section 1 Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 2018 Reverse Circulation (RC) Drilling Minyari Dome Area Prospects/Targets: Air Core and geophysical targets have been evaluated by the 2018 RC drilling programme. A total of fifty-one (51) 2018 RC drill holes were completed at the Minyari Dome, totaling 8,077m, with an average maximum drill hole depth of 162m. The eighteen (18) 2018 RC drill holes which are the subject of this public disclosure are 18MYC0167 to 18MYC0184 inclusive, totaling 2,778m, with an average maximum drill hole depth of 154m. Assay results for 2018 RC drill hole 18MYC0146, hole depth 153m, were previously publicly reported on the 1 August 2018. Assay results for twenty-six (26) 2018 RC drill holes being 18MYC0140 to 18MYC0145 and 18MYC0147 to 18MYC0166, totaling 4,541m, with an average maximum drill hole depth of 175m, were previously publicly reported on the 2 October 2018. Assay results are pending for five (5) 2018 RC drill holes (i.e. 18MYC0185 to 18MYC0189), totaling 605m with an average maximum drill hole depth of 121m. Drill hole locations for these 2018 holes are tabulated in the body of this report. RC Sampling: RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. RC Samples were drilled using a 140mm diameter face sampling hammer and sampled on intervals of 1.0m using a rig mounted cone splitter from which a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay. Compositing of unmineralised regions (guided by Niton portable XRF field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Reverse Circulation Drilling All drill holes were completed using 140mm RC face sampling hammer drill bit from surface to the end of hole. Drill holes were predominantly angled towards local grid east (058° Magnetic), with some drill holes directed to local grid west, all drill holes at an inclination angle of between -55° to -65°.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and 	 RC Drill Samples RC sample recovery was recorded via visual estimation of sample volume. RC sample recovery typically ranges from 90 to 100%, with only very occasional samples with less than 70% recovery. RC sample recovery was maximized by endeavoring to maintain a dry drilling conditions as much as

Criteria	JORC Code explanation	Commentary
	grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Practicable; the RC samples were almost exclusively dry. All samples were split on a 1m interval using a rig-mounted cone splitter. Adjustments were made to ensure representative 2 to 3kg sample volumes were collected. Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery. RC sample recovery and sample quality was recorded via visual estimation of sample volume and condition of the drill spoils. RC results are generated for the purpose of exploration and potentially for Mineral Resource estimations.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC Drill Logging All RC material is logged. Logging includes both qualitative and quantitative components. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master Access SQL database. Geological logging of 100% of all RC sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. RC sample intervals were routinely measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. RC samples are generally analyzed in the field using a Portable XRF Device (Niton) for the purposes of geochemical and lithological interpretation and the selection of sampling intervals.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC Samples RC samples for all drill holes were drilled using a 140mm diameter face sampling hammer and split on intervals of 1.0m using a rig mounted cone splitter from which a 3 kg (average) sample which was pulverised at the laboratory pulverised to produce material for assay. Compositing of unmineralised regions (guided by Portable XRF / Niton field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 3 kg (average) sample which was pulverised at the laboratory to produce material for assay. Field duplicate samples were collected for all RC drill holes. RC Sample Preparation Sample preparation of RC samples was completed at MinAnalytical Laboratories in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the sample down to approximately 10mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 µm and split into a sub–sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the sulphide style of mineralisation at Minyari, the thickness and consistency of the intersections and the sampling

Criteria	JORC Code explanation	Commentary
		methodology.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The sample preparation technique for RC samples is documented by Antipa Mineral Ltd's standard procedures documents and is in line with industry standards in sample preparation. The sample sizes are considered appropriate to represent mineralisation. Sample preparation checks for fineness were carried out by the laboratory as part of its internal procedures. Analytical Techniques: A lead collection fire assay on a 50g sample with Atomic Absorption Spectroscopy undertaken to determine gold content with a detection limit of 0.005ppm. All samples were dried, crushed, pulverised and split to produce a sub–sample for a 25g sample which are digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acids ('four acid digest') suitable for silica based samples. This digest is considered to approach a total dissolution for most minerals. Analytical methods used were ICP–OES (Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, S, Ti, V and Zn) with selective ICP–MS (Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cs, Ga, Ge, Hf, in, La, Li, Mo, Nb, Ni, Pb, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, TI, U, W, Y and Zr). Ore grade ICP–OES analysis was completed on samples returning results above upper detection limit. No geophysical tools were used to determine any element concentrations in this report. A handheld portable Niton XRF analyser (XL3t 950 GOLDD+) device is used in the field to investigate and record geochemical data for internal analysis. However, due to 'spatial' accuracy/repeatability issues this data is generally not publicly reported for drill holes, other than for specific purposes/reasons. Field QC procedures involve the use of commercial certified reference material (CRM's) for assay standards and blanks. Standards are inserted every 25 samples. The grade of the inserted standard is not revealed to the laboratory. Field duplicates/repeat QC samples was utilised during the RC drilling programme with nominally two to three
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Significant intersections of the drilling have been visually verified by highly experienced Antipa Project geologists. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to

Criteria	JORC Code explanation	Commentary
	Discuss any adjustment to assay data.	Antipa's master SQL database.
		 No adjustments or calibrations have been made to any assay data collected.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 km = kilometre; m = metre; mm = millimetre. Drill hole collar locations are surveyed using a handheld Garmin 64S GPS which has an accuracy of ± 3m. The drilling co-ordinates are all in GDA94 MGA Zone 51 co-ordinates. The Company has adopted and referenced one specific local grid across the Minyari Dome region ('Minyari' Local Grid) which is defined below. References in the text and the Minyari deposit diagrams are all in this specific Minyari Local Grid. Minyari Local Grid 2-Point Transformation Data: Minyari Local Grid 2-Point Transformation Data: Minyari Local Grid 47,400m east is 421,462.154m east in GDA94 / MGA Zone 51; Minyari Local Grid 99,000m north is 7,632,467.588 m north in GDA94 / MGA Zone 51; Minyari Local Grid 47,400m east is 414,078.609m east in GDA94 / MGA Zone 51; Minyari Local Grid 113,000m north is 7,644,356.108m north in GDA94 / MGA Zone 51; Minyari Local Grid North (360°) is equal to 330° in GDA94 / MGA Zone 51; Minyari Local Grid elevation is equal to GDA94 / MGA Zone 51. The topographic surface has been defaulted to 257m RL. Rig orientation was checked using Suunto Sighting Compass from two directions. Drill hole inclination was set by the driller using a clinometer on the drill mast and checked by the geologist prior the drilling commencing. The topographic surface has been compiled using the drill hole collar coordinates. RC downhole surveys were undertaken in-hole during drilling using a 'Reflex EZ Trac Camera' device at 30 metre intervals with a final survey at the end of the drill hole. Downhole surveys were checked by the supervising geologist for consistency. If required, readings were re-surveyed or smoothed in the database if unreliable azimuth readings were apparent. Survey details included drill hole dip (±0.25° accuracy) and drill hole azimuth (±0.35 accuracy°) Total Magnetic field and temperature.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill section spacing, at this stage, is insufficient to establish the degree of geological and grade continuity necessary to support future Mineral Resource estimations. RC drill sample compositing has been applied for the reporting of exploration results.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have 	 The drill section spacing and sampling, at this stage, is insufficient to establish the presence of any possible sampling bias. Based on the limited data currently available, the relationship between drilling orientation and key mineralised structures is uncertain.

Criteria	JORC Code explanation	Commentary
	introduced a sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	 Chain of sample custody is managed by Antipa to ensure appropriate levels of sample security. Samples are stored on site and delivered by Antipa or their representatives to Newman and subsequently by Centurion Transport from Newman to the assay laboratory in Perth.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Sampling techniques and procedures are regularly reviewed internally, as is the data. Consultants Snowden, during completion of the 2013 Calibre Mineral Resource estimate, undertook a desktop review of the Company's sampling techniques and data management and found them to be consistent with industry standards.

MINYARI DOME AREA – 2018 Reverse Circulation Drilling Programme

Section 2 – Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Minyari Dome drilling and other exploration data is located wholly within Exploration Licenses E45/3919 and E45/3917 (granted). Antipa Minerals Ltd has a 100% interest in E45/3919 and E45/3917. A 1% net smelter royalty payable to Paladin Energy on the sale of product on all metals applies to these tenements as a condition of a Split Commodity Agreement with Paladin Energy in relation to the Company's North Telfer Project. The North Telfer Project, including the Minyari deposit, is not subject to the Citadel Project Farm-in Agreement with Rio Tinto Exploration Pty Ltd. All tenements are contained completely within land where the Martu People have been determined to hold native title rights. To the Company's knowledge no historical or environmentally sensitive sites have been identified in the area of work. Land Access and Exploration Agreements are in place with the Martu People. Antipa maintains a positive relationship with the Martu People, who are Native Title parties in the area. The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Minyari and WACA deposits were greenfield discoveries by the Western Mining Corporation Ltd during the early 1980's. Exploration of the Minyari Dome region has involved the following companies: Western Mining Corporation Ltd (1980 to 1983); Newmont Holdings Pty Ltd (1984 to 1990); MIM Exploration Pty Ltd (1990 to 1991); Newcrest Mining Limited (1991 to 2015); and

Criteria	JORC Code explanation	Commentary
		Antipa Minerals Ltd (2016 onwards).
Geology	Deposit type, geological setting and style of mineralisation.	 The geological setting is Paterson Province Proterozoic aged meta-sediment hosted hydrothermal shear, fault and strata/contact controlled precious and/or base metal mineralisation which is typically sulphide bearing. The mineralisation in the region is interpreted to be granite related. The Paterson is a low grade metamorphic terrane but local hydrothermal alteration and/or contact metamorphic mineral assemblages and styles are indicative of a high-temperature local environment. Mineralisation styles include vein, stockwork, breccia and skarns.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A summary of all available information material to the understanding of the Minyari Dome region exploration results can be found in previous WA DMIRS publicly available reports. All the various technical Minyari Dome region exploration reports are publicly accessible via the DMIRS' online WAMEX system. The specific WAMEX and other reports related to the exploration information the subject of this public disclosure have been referenced in previous public reports. Antipa Minerals Ltd publicly disclosed reports provide details of all exploration completed by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported aggregated intervals have been length weighted. No density or bulk density is available and so no density weighting has been applied when calculating aggregated intervals. No top-cuts to gold or copper have been applied (unless specified otherwise). A nominal 0.40 g/t gold or 0.10% copper lower cut-off grade is applied during data aggregation. Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals. Metal equivalence is not used in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The drill section spacing and sampling, at this stage, is insufficient to establish the geometrical relationships between the drill holes and the mineralised structures. Therefore, at this stage the reported intersection lengths are down hole in nature and the true width, which will be dependent on the local mineralisation geometry/setting, is not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a	 All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide maps and sections (with scales) and

Criteria	JORC Code explanation	Commentary
	plan view of drill hole collar locations and appropriate sectional views.	tabulations of intercepts generated by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au .
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant results are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide details of all significant exploration results generated by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. The details of the Minyari Dome region historic Induced Polarisation survey, including IP Chargeability and resistivity anomalies, can be found in WA DMIRS publicly available WAMEX reports A81227 (2008), A86106 (2009) and A89687 (2010). The details of the Company's reprocessing, review and modelling of the Minyari Dome region historic Induced Polarisation survey, including IP Chargeability and resistivity anomalies, can be found in the Company's ASX report titled "Minyari Reprocessed IP Survey Results" created on 5 July 2016. Zones of mineralisation and associated waste material have not been measured for their bulk density; however, Specific Gravity ('Density') measurements will be taken from the 2016 diamond drill core. Multi element assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulfur, lead, zinc and magnesium. Geotechnical logging was carried out on three Minyari deposit diamond drill holes for Recovery, RQD and Fracture Frequency. No Geotechnical logging (e.g. Recovery, RQD and Fracture Frequency) was obtained from the WAMEX reports. Downhole 'logging' of a selection of Minyari Dome RC drill holes drilled since 2016 using an OBI40 Optical Televiewer generated an oriented 360° image of the drill hole walls via a CCD camera recorded digital image. The OBI40 system utilised also included a North Seeking Gyro-scope to measure drill hole location/deviation, and the downhole survey also measured rock density, magnetic susceptibility, natural gamma and included a borehole caliper device for measuring drill hole diameter. The combined dataset collected via the OBI40 Optical Televiewer downhole survey data has multiple geological and geotechnical uses, including but not limited to the detection and determination of in-situ litholog

Criteria	JORC Code explanation	Commentary
		 A programme of OBI40 Optical Televiewer downhole 'logging' for a selection of 2017 Phase 1 RC drill holes (i.e. Total 16 holes for 3,279m = 13 holes for 2,771m at the WACA deposit, 2 holes for 428m at the Minyari deposit and 1 hole for 80m at the Jude's prospect) was completed during 2017. A programme of OBI40 Optical Televiewer downhole 'logging' for a selection of 2018 RC drill holes (Total of 8 holes for 638m = 6 holes for 448m at the Minyari South area and 2 holes for 190m at the Judes area) was completed between August and October 2018. Information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material derived mainly from diamond drilling is stored in the Company's technical SQL database. No information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material was obtained from the WAMEX reports. Preliminary metallurgical test-work results are available for both the Minyari and WACA deposits. Details of this 2017 metallurgical test-work programme can be found on the ASX or Antipa websites – Public release dated 13 June 2017 and titled "Minyari Dome Positive Metallurgical Test-work Results". In summary both oxide and primary gold mineralisation (with accessory copper and cobalt) responded very satisfactorily to conventional gravity and cyanidation processes, with flotation to recovery copper and cobalt by-products the subject of ongoing evaluation. In addition, the following information in relation to metallurgy was obtained from WA DMIRS WAMEX reports: Newmont Holdings Pty Ltd collected two bulk (8 tonnes each) metallurgical samples of oxide mineralisation in 1987 (i.e. WAMEX 1987 report A24464) from a 220m long costean across the Minyari deposit. The bulk samples were 8 tonnes grading 1.5 g/t gold and 8 tonnes grading 3.57 g/t gold from below shallow cover in the costean. However, it would appear the Newmont

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planned further work: Ongoing review and interpretations of the 2018 and previous Minyari Dome exploration data; Planning and potential future execution of exploration activities to identify both depth and lateral extensions to potential high-grade gold and/or copper mineralisation; Full geological interpretation, 3D modelling and subsequent Mineral Resource estimation if warranted. All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.

TURKEY FARM – 2018 Prospecting

JORC Code 2012 Edition: Table 1 - Section 1 Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 A metal detector was used to identify and recover coarse gold, including nuggets, from areas previously targeted by explorers, within the near-surface profile The coarse gold, including nuggets, were hand dug The gold samples were not tested for purity
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	The 2018 Prospecting activities, including metal detecting, did not involve any drilling
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	The 2018 Prospecting activities, including metal detecting, did not involve any drilling
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	The gold found is only qualitative and must be interpreted in combination with geological mapping of the target area and limited historical drill hole results

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The gold was found in the near surface, lateritised residual soil profile within the strike corridor of the Turkey Farm mineralisation as previously identified by limited and broad spaced (200m) historical drilling The location of the coarse gold, including nuggets, within the mineralisation strike corridor is a positive indication that the source of this gold is related to the mineralisation at the Turkey Farm prospect
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	No assay data or laboratory tests have been completed
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No verification sampling has been undertaken of surface material Historic high-grade drilling results reported in previous ASX releases support a local provenance for the coarse gold/nuggets
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The 2018 Prospecting activities, including metal detecting, did not involve any drilling Sample locations were recorded relative to nearby historic drill holes and grid pegs Samples came from within the strike corridor of the surface expression of the Turkey Farm prospect
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Randomly spaced reconnaissance prospecting and metal detecting Not for Mineral Resource estimation No compositing applied
Orientation of data in relation	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is	 Orientation of data not relevant All surface samples were derived from the lateritised soil profile and as such it is uncertain if the

Criteria	JORC Code explanation	Commentary
to geological structure	 known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	sample material is in-situ; however, given the spatial correlation with the known Turkey Farm gold mineralisation these gold samples are likely related the in-situ mineralisation in some way
Sample security	The measures taken to ensure sample security.	 The gold specimens were collected in the field by an independent prospector The samples were brought directly to Antipa Minerals for inspection, but remain in the independent prospector's possession
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been completed

TURKEY FARM RANCH – 2018 Prospecting

Section 2 – Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Antipa Minerals holds E45/4867 over the Chicken Ranch and Turkey Farm area The tenement is a member of the Paterson Project joint reporting group C108/2015 Antipa Minerals maintains a positive relationship with the traditional land owners, the Martu people
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The exploration of the Chicken Ranch and Turkey Farm area was conducted by the following major resources companies: Newmont Pty. Ltd. (early 1970s to 1986) Carr Boyd Minerals Limited (1973 to 1975) Geopeko Limited (JV with Carr Boyd) (1975 to 1978) Marathon Petroleum Australia Ltd. (1979) Western Mining Corporation Ltd. (WMC) (1980) Duval Mining (Australia) Ltd. (Carr Boyd JV with Picon Exploration Pty. Ltd.) (1984 to 1986) Mount Burgess Gold Mining Company N.L. (1989 to 2001) Carpentaria (MIM JV with Mount Burgess) (1990 to 1996) Normandy (JV with Mount Burgess) (1998 to 2000) Newcrest Mining Limited (2009 to 2015) Quantum Resources Ltd (2012 to 2017) Antipa Minerals Ltd (2017 to present)

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 The geology of the Chicken Ranch and Turkey Farm area is dominated by a northwest trending sequence of moderate to steeply east dipping siltstone, carbonate siltstone, dolomite, and subordinate fine-grained sandstone of the Puntapunta Formation. This sequence occurs on the northeast flank of the Camp Dome complex, a regional scale doubly plunging anticline. Regional mapping undertaken by previous explorers indicates that the Chicken Ranch prospect may be related to a parasitic fold on the flank of the Camp Dome, or a separate fold structure altogether. Mineralization occurs mainly in two discrete northwest trending gossanous lenses and is associated with goethite pseudomorphs after massive pyrite alteration. The entire zone is deeply oxidized. "Fresh rock" mineralization has not yet been identified. The southwest lens of mineralisation is more persistent and ha a strike length of approximately 1,200m. The Turkey Farm prospect is located approximately 1.0 km west of Chicken Ranch, and is hosted by irregular, sub-vertical northwest trending quartz-ironstone veins to 0.5m width. Unmineralised quartz veins in the same orientation are also present and are interpreted to be axial planar to the regional fold structure.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All drillhole results have been reported previously in open file WAMEX reports and can be accessed using the DMP's online system. The specific WAMEX and other reports related to the exploration information the subject of this public disclosure have been referenced in previous public reports. Antipa Minerals Ltd publicly disclosed reports provide details of all exploration completed by the Company since 2016; these reports are all available to view on www.asx.com.au and www.asx.com.au.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 N/A Metal equivalence is not used in this report

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	The 2018 Prospecting activities, including metal detecting, did not involve any drilling
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide maps and sections (with scales) and tabulations of intercepts generated by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All significant results are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide details of all significant exploration results generated by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. The 2018 Prospecting activities, including metal detecting, did not involve any drilling No metallurgical test-work results are available
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planned further work: Ongoing review and interpretations of the 2018 prospecting results and historic Turkey Farm exploration data; Planning and future execution of exploration activities to identify both depth and lateral extensions to potential high-grade gold and/or copper mineralisation; All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.