

PATERSON AND NORTH TELFER PROJECTS DELIVER RESOURCE GROWTH POTENTIAL AND ADDITIONAL BROWNFIELDS TARGETS

Antipa Minerals Limited (ASX: AZY) ('Antipa' or the 'Company') is pleased to provide the following update based on recent drilling results from Tim's Dome, Chicken Ranch and Minyari Dome that form part of its 100%-owned Paterson and North Telfer Projects. These are located in the world-class Paterson Province in northern Western Australia. The Company has also identified multiple new brownfields and greenfields exploration targets that will be evaluated in 2019.

HIGHLIGHTS

<u>Tim's Dome:</u> Multiple significant intersections confirmed with key intercepts¹ including:

- 8.0m at 1.81 g/t gold from 109m in 18TDC033, including;
 - 1.0m at 8.18 g/t gold from 111m.
- **64.0m at 0.58 g/t gold** from 4m in 18TDC041, including;
 - 4.0m at 1.22 g/t gold from 4m;
 - 16.0m at 0.93 g/t gold from 36m; and
 - 1.0m at 3.44 g/t gold from 59m.
- 22.0m at 0.85 g/t gold from 160m in 18TDC0021, including;
 - 4.0m at 1.90 g/t gold from 177m; and
 - 6.0m at 1.06 g/t gold from 164m.
- 3.0m at 1.25% copper, 5.63 g/t silver and 0.30 g/t gold from 130m in 18TDC004, including;
 - 1.0m at 2.16% copper, 11.57 g/t silver and 0.61 g/t gold from 130m.

<u>Chicken Ranch:</u> Shallow high-grade mineralisation remains open along-strike, key intercepts include:

- 6.0m at 3.88 g/t gold and 0.09% copper from 82m in 18CRC020, including;
 - 2.0m at 7.39 g/t gold and 0.14% copper from 82m.
- 4.0m at 1.84 g/t gold from 120m in 18CRC020.

Minyari Dome: Follow-up drilling increases Judes and Minyari South potential.

Additional Brownfield Resource Targets Identified:

Triangle Area – Extensive gold mineralisation across a 6km strike length located 20km from Chicken Ranch and Telfer, with historic intercepts including:

- 1.0m at 30.00 g/t gold from 107m in TRC008.
- 50.0m at 0.91 g/t gold from 8m in TRB0406, including;
 - 10.0m at 3.58 g/t gold from 8m; also including
 - 2.0m at 15.00 g/t gold from 8m.

¹ All drill holes intervals expressed in the announcement are down-hole distances.

- 12.0m at 2.02 g/t gold from 4m in NTR1902, including;
 - 2.0m at 10.57 g/t gold from 10m.
- 8.0m at 2.76 g/t gold from 26m in NTR1809, including;
 - 2.0m at 5.47 g/t gold from 28m.
- 40.0m at 0.84 g/t gold from 18m in TRB0601, including;
 - 22.0m at 1.27 g/t gold from 24m.

Pajero Area – Four zones of significant mineralisation within 1 to 4km of Chicken Ranch, with historic intercepts including:

- 20.0m at 3.50 g/t gold from 13m in CR324, including;
 - 4.0m at 12.0 g/t gold from 13m.
- 16.0m at 1.09 g/t gold from 46m in CRAC02, including;
 - 4.0m at 3.65 g/t gold from 48m.

Greenfield Exploration:

- Greenfield exploration programme expanded to include 260km² aeromagnetic survey.
- Antipa continues to evaluate aerial electromagnetic targets and aeromagnetic targets, particularly within the highly prospective El Paso Structural Corridor.
- Drilling of greenfield targets planned to commence in March 2019.

Antipa Managing Director, Roger Mason commented: "This latest batch of drilling results confirm the brownfields upside potential of Antipa's Paterson Province deposits which will be included into a revised resource estimate targeting late Q1 CY2019. We are also pleased to have identified new brownfields targets with some historical drilling that requires follow-up including Triangle and Pajero. These provide further resource growth opportunities in the immediate vicinity of our existing projects.

Whilst the testing of the IP targets at Tim's Dome did not intersect significant mineralisation, there remains significant scope for the generation of further Telfer style IP targets within the 8km long Tim's Dome exploration corridor. In addition, we have advanced the drill-ready status of geophysical targets within the El Paso Structural Corridor which will be drilled in 2019".

OVERVIEW

Antipa is pleased to provide an update on further results from the recent reverse circulation ("RC") and air core drilling at Tim's Dome and follow-up RC drilling at Chicken Ranch and Minyari Dome. Antipa's Tim's Dome deposit, Chicken Ranch deposit, the new Triangle prospect and the Minyari Dome resources are located 12, 15, 19 and 40km respectively from Newcrest Mining Ltd's Telfer gold mine and Minyari-WACA is 88km from Rio Tinto's newly established exploration camp in Western Australia's Paterson Province (Figures 8 and 9). Greatland Gold plc's Havieron deposit is 20km from the Triangle prospect (Figures 8 and 9).

The Company's Paterson Province dual exploration strategy remains on course to strive to deliver both greenfield discoveries and increase brownfield gold ± copper resources during 2019, with the overarching objective being to realise a short-term production opportunity.

TIM'S DOME AREA

The Tim's Dome RC programme (41 drill holes for 5,976m) was focused on resource opportunities and also testing Induced Polarisation (IP) targets. In addition to the RC programme, Antipa completed a limited air core programme at Tim's Dome Ranch (17 drill holes for 478m) focussed on selected IP targets. Figures 1 and 2 illustrate plan views summarising the drilling results and Tables 1 and 2a-b set out drill hole intersection and collar details.

Tim's Dome Resource Opportunity

A significant component of the Tim's Dome RC programme (16 holes for 2,457m) focused on a 1km region at the southern end of the 3.5km long western zone of existing gold mineralisation, with the aim of identifying additional mineralisation capable of supporting a maiden resource estimation (Figure 1). The remaining 2.5km of this western gold mineralisation trend requires further evaluation. Drilling in this region returned a number of significant zones of thick, low to moderate grade gold mineralisation, with similar or higher grades to Newcrest's Telfer gold mine open pit resource grade² located 12km from Tim's Dome.

Results for these RC drill holes include:

- 8.0m at 1.81 g/t gold and 0.17% copper from 109m in 18TDC033, including;
 - 1.0m at 8.18 g/t gold from 111m.
- 64.0m at 0.58 g/t gold from 4m in 18TDC041, including;
 - 4.0m at 1.22 g/t gold from 4m;
 - 16.0m at 0.93 g/t gold from 36m; and
 - 1.0m at 3.44 g/t gold from 59m.
- 22.0m at 0.85 g/t gold from 160m in 18TDC0021, including;
 - 4.0m at 1.90 g/t gold from 177m; and
 - 6.0m at 1.06 g/t gold from 164m.
- 19.0m at 0.70 g/t gold from 109m in 18TDC036, including;
 - 12.0m at 0.97 g/t gold from 116m in 18TDC036;
- 28.0m at 0.62 g/t gold from 44m in 18TDC0018, including;
 - 6.0m at 1.13 g/t gold from 53m.

Available results together with historical drill intersections confirm the resource potential of the Tim's Dome area, positioned just 34km southwest of the Company's existing Minyari Dome Mineral Resources. The Company will focus on delivering a maiden Mineral Resource for the Tim's Dome deposit in late Q1 CY2019.

Tim's Dome Induced Polarisation Targets

The remainder of the Tim's Dome RC programme (25 holes for 3,519m) and the air core programme focused on testing a number of targets generated by IP surveys completed in 2018 and 2002, with the aim of identifying new gold \pm copper mineralisation (Figures 1 and 2). Targets included postulated steeply dipping stock-work corridors on both the eastern and

² Source Newcrest Mining Ltd 2018 Annual Report (Page # 30 – Telfer Main Dome and West Dome Open Pit resources): http://www.newcrest.com.au/media/annual reports/Newcrest Annual Report 2018 1.pdf. ²

western side of the Tim's Dome axis, and shallowly dipping, lithological contact related, reef style mineralisation around the eastern side of Tim's Dome.

Results for the RC and air core holes testing IP targets include:

- 10.0m at 0.56% copper, 2.14 g/t silver and 0.30 g/t gold from 129m in 18TDC004, including;
 - 3.0m at 1.25% copper, 5.63 g/t silver and 0.30 g/t gold from 130m in 18TDC004, also including;
 - 1.0m at 2.16% copper, 11.57 g/t silver and 0.61 g/t gold from 130m.
- 2.0m at 1.23 g/t gold 0.60% copper, 1.42 g/t silver and from 147m in 18TDC004.
- 2.0m at 4.00 g/t gold from 0m in 18TDA0135.

Whilst limited zones of significant mineralisation were intersected from testing of the IP targets, conceptual targets for Telfer mineralisation styles remain valid. Therefore, further geophysical surveys are being considered to evaluate an additional 1.5km strike of the eastern reef-style target trend, a 1.0×1.0 km northern target area for Telfer stockwork and I30 mineralisation styles, and several target areas on the western side of Tim's Dome.

Antipa would like to acknowledge the Western Australia Government's Exploration Incentive Scheme (EIS), through which it secured co-funding grants totalling up to \$148,000 for up to 4,000m of the 2018 Tim's Dome RC drilling.

CHICKEN RANCH AREA

The Chicken Ranch 2018 drilling programmes were focused on identifying new mineralisation in proximity to the existing (historic) high-grade gold mineralisation, including parallel trends. In addition to an air core programme and an initial RC programme, Antipa completed follow-up RC drilling at Chicken Ranch (4 drill holes for 475m) focussed on the immediate resource growth opportunity. Refer to Figure 3 for plan views summarising the drilling results and Table 1 and Table 2c for drill hole intersection and collar details.

Results for these final four Chicken Ranch RC drill holes have been received and include:

- 6.0m at 3.88 g/t gold and 0.09% copper from 82m in 18CRC020, including;
 - 2.0m at 7.39 g/t gold and 0.14% copper from 82m.
- 4.0m at 1.84 g/t gold from 120m in 18CRC020.

Available results together with historical drill intersections confirm the high-grade gold potential of the Chicken Ranch area, positioned just 25km south of the Company's existing Minyari Dome Mineral Resources. The Company will focus on delivering a maiden Mineral Resource for the Chicken Ranch deposit during the first quarter of CY2019.

Antipa would like to acknowledge the Western Australia Government's Exploration Incentive Scheme (EIS), through which it secured co-funding grants totalling up to \$149,500 for up to 4,600m of the 2018-19 Chicken Ranch RC drilling.

MINYARI DOME

The Minyari Dome 2018 drilling programme was focused on identifying new mineralisation in close proximity to the existing high-grade 723,000 ounce gold, 26,400 tonne copper and 4,000 tonne cobalt Mineral Resources of Minyari and WACA³. In addition to the first-pass RC programme, Antipa completed follow-up RC drilling at Minyari Dome (5 holes for 605m) at Judes and Minyari South. Refer to Figure 4 for plan views summarising the drilling results and Table 1 and Table 2d for drill hole intersection and collar details.

The 2018 drilling has identified new zones of potentially significant mineralisation including 18m at 3.05g/t gold, 0.32% copper and 0.05% cobalt from 47m at Minyari South⁴ and at Judes 45m at 0.56% copper, 0.10 g/t gold and 2.21 g/t silver from 72m including 10m at 2.05% copper, 0.19 g/t gold and 9.11 g/t silver from 106m⁵, highlighting the potential to add new zones of high-grade gold-copper resource across the Minyari Dome.

Minyari South

The completion of 3 follow-up RC holes confirmed a highly oblique strike (065°) for the Minyari South high-grade gold mineralisation in comparison to the strike of the Minyari (020°) and WACA (350°) deposits. This oblique Minyari South high-grade gold orientation has implications for exploration across the Minyari Dome, as this trend is not effectively evaluated by the predominant northeast-southwest drill direction and oblique high-grade controls are potentially evident within both the Minyari and WACA deposits.

The Company's review of the Minyari South target is ongoing, with the application of electrical geophysical surveys to "map" sulphide mineralisation under consideration.

Judes

The Company recently identified a new zone of high-grade copper mineralisation at Judes approximately 1.6km northwest of the defined Minyari resource. The completion of 2 follow-up RC holes and depth extension of a third RC hole confirmed the zone of copper + gold + silver ± cobalt mineralisation extends across 150m of strike and is open in all directions. However, the continuity of eastern high-grade copper "shoot" was not established due to mineralisation strike and dip variations re-positioning the target to the east of achievable drill limits.

The Company's review of the Judes target is ongoing, with the application of electrical geophysical surveys to "map" sulphide mineralisation under consideration.

Antipa would like to acknowledge the Western Australia Government's Exploration Incentive Scheme (EIS), through which it secured co-funding grants totalling up to \$298,000 for up to 8,000m of the 2018 Minyari Dome RC drilling.

³ Refer to Minyari Deposit and WACA Deposit Mineral Resource Statement in the Competent Persons Statement section of this document.

⁴ Refer to Antipa Minerals Ltd ASX release dated 1 August 2018.

⁵ Refer to Antipa Minerals Ltd ASX release dated 2 October 2018.

ADDITIONAL BROWNFIELD RESOURCE TARGETS

The Company's ongoing evaluation of historic data has identified several high priority brownfield prospects which have the potential to deliver additional shallow "satellite" high-grade gold resources. The Triangle area, Pajero area and Turkey Farm, along with Tim's Dome and Chicken Ranch, are all located within 25 to 40km of the Company's existing Minyari-WACA resource (Figures 8 and 9). Refer to Figures 5, 6 and 7 for plan views summarising the historic drilling results and Table 1 and Table 2e for drill hole intersection and collar details.

Triangle Area

The Triangle area is located approximately 20km from Chicken Ranch and Telfer (Figures 5, 8 and 9) and hosts extensive gold mineralisation along a 6km strike length across the Triangle Dome. Mineralisation is hosted within interpreted Malu Formation which also hosts the Telfer deposit.

Triangle area historic drill intercepts include:

- 1.0m at 30.00 g/t gold from 107m in TRC008.
- 50.0m at 0.91 g/t gold from 8m in TRB0406, including;
 - 10.0m at 3.58 g/t gold from 8m; also including
 - 2.0m at 15.00 g/t gold from 8m.
- 12.0m at 2.02 g/t gold from 4m in NTR1902, including;
 - 2.0m at 10.57 g/t gold from 10m.
- 8.0m at 2.76 g/t gold from 26m in NTR1809, including;
 - 2.0m at 5.47 g/t gold from 28m.
- 40.0m at 0.84 g/t gold from 18m in TRB0601, including;
 - 22.0m at 1.27 g/t gold from 24m.
- 46.0m at 0.74 g/t gold from 24m in NTR1809, including;
 - 8.0m at 2.76 g/t gold from 26m, also including;
 - 2.0m at 5.47 g/t gold from 28m.

Pajero Area

The Pajero area is located between 1 to 4km from Chicken Ranch (Figure 6, 8 and 9) and hosts four zones of significant gold and/or copper mineralisation (i.e. Big Banana, Pajero, Wobbley's Gossan and Teriyaki) around the south-eastern portion of the Camp Dome, which hosts Newcrest's 17 Mile Hill copper resource within interpreted Malu Formation and Telfer Member lithologies which also host the Telfer deposit.

Pajero area historic drill intercepts include:

- 20.0m at 3.50 g/t gold from 13m in CR324, including;
 - 4.0m at 12.0 g/t gold from 13m.
- 16.0m at 1.09 g/t gold from 46m in CRACO2, including;
 - 4.0m at 3.65 g/t gold from 48m.

Turkey Farm Prospect

The Turkey Farm prospect is located just 1km west of the Chicken Ranch deposit (refer to Figures 7, 8 and 9). The recent identification at Turkey Farm of at surface coarse gold in combination with significant historic drill intersections grading up to 12.1 g/t gold, from broad 200m spaced drill holes along a strike length of 750m, confirms the Company's view on prospectivity, including the potential for additional shallow gold resources. A heritage survey was recently completed at Turkey Farm in preparation for drilling activities next year.

Turkey Farm historic drill intercepts include:

- 7.0m at 2.40 g/t gold from 65m in YRB5057, including;
 - 3.0m at 5.07 g/t gold from 65m in YRB5057, also including;
 - 1.0m at 12.10 g/t gold from 65m.
- 7.0m at 1.02 g/t gold from 68m in YRB5089, including;
 - 3.0m at 2.15 g/t gold from 68m.

GREENFIELD EXPLORATION PROGRAMME

Electromagnetic Targets

The previously announced aerial electromagnetic ("AEM") survey⁶ covered a total strike length of 70km across the highly prospective El Paso Structural Corridor and identified a total of eleven high priority EM conductivity targets for further exploratory work. The Company has since had the opportunity to further prioritise these targets and undertake additional field-based activities, including establishing access tracks and completing the first of two heritage surveys. The exploration work programme involves ongoing drill planning, a second heritage survey (scheduled for early March) and subsequent drill programmes. The current timeline envisages the commencement of an air core drill programme during the first quarter of CY2019 and, contingent upon results, a follow-up RC drill programme. AEM has been instrumental in several significant Paterson Province discoveries and this is the first geophysical survey of this type over this area.

Magnetic Targets

In addition to AEM, aeromagnetics has also been involved in several significant Paterson Province discoveries, including Havieron (1991 Newcrest discovery), O'Callaghans, 17 Mile Hill and Calibre. As part of an expanded greenfield exploration programme, the Company intends to test a selection of magnetic targets, including several Havieron deposit lookalikes.

Ongoing exploration activities at the Company's Paterson Province Projects include:

- Aeromagnetic and radiometric survey planning and December execution and subsequent drill targeting⁷;
- Aerial EM target drill planning including second heritage survey;
- Turkey Farm prospect drill planning;
- Triangle area and Pajero area drill planning including heritage survey;
- Planning for additional Tim's Dome ± Minyari Some electrical geophysical surveys; and
- 3D geological modelling and Mineral Resource estimations for Chicken Ranch and Tim's Dome.

⁶ Refer to Antipa Minerals Ltd ASX release dated 15 October 2018.

⁷ Refer to Antipa Minerals Ltd ASX release dated 10 December 2018.

For further information, please visit $\underline{www.antipaminerals.com.au}$ or contact:

Roger Mason	Stephen Power	Luke Forrestal
Managing Director	Executive Chairman	Senior Account Director
Antipa Minerals Ltd	Antipa Minerals Ltd	Media & Capital Partners
+61 (0)8 9481 1103	+61 (0)8 9481 1103	+61 (0)8 9389 4270

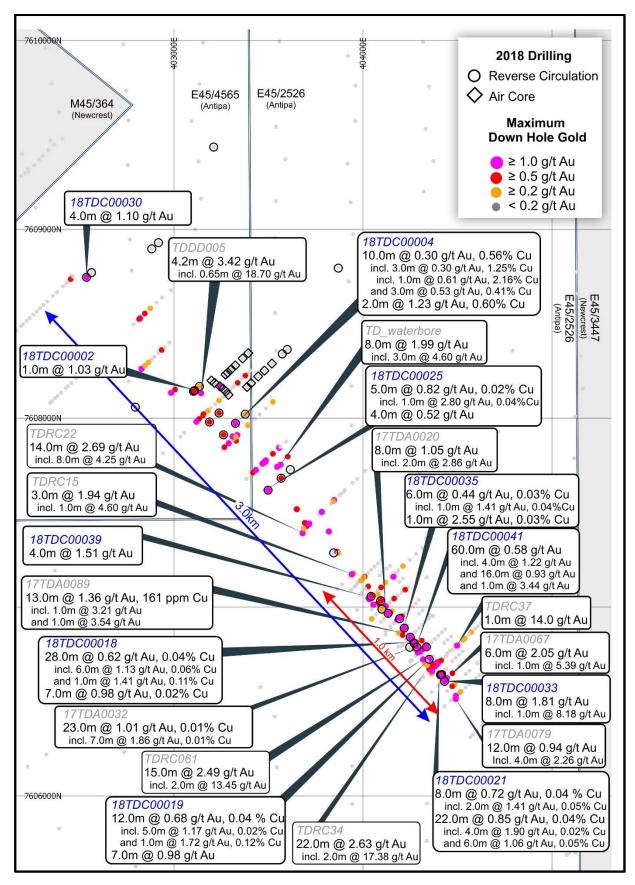


Figure 1: Tim's Dome plan showing maximum down hole gold values, significant drill intersections (including 2018 intersections) and tenement boundaries. Regional GDA94 / MGA Zone 51 co-ordinates, 1km grid.

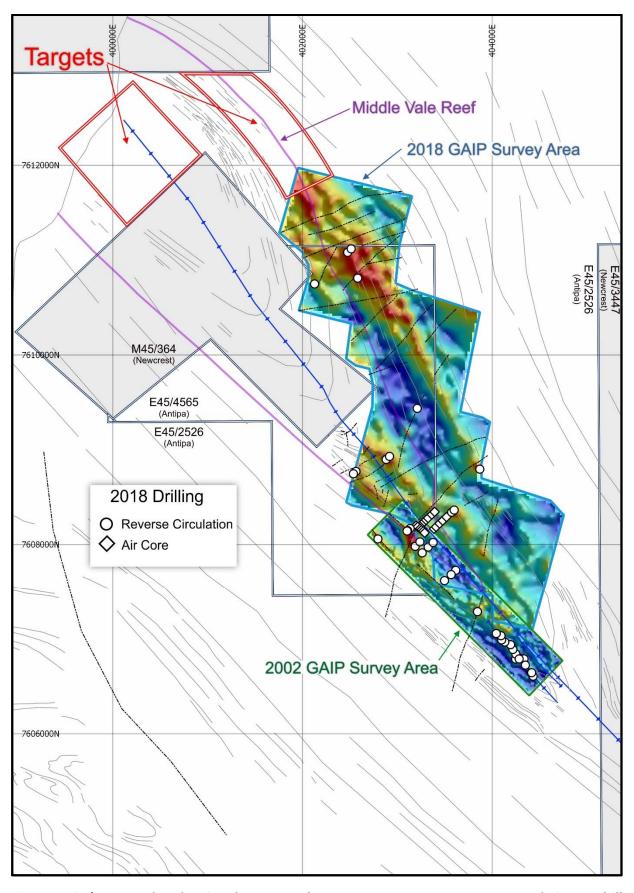


Figure 2: Tim's Dome plan showing the 2018 and 2002 GAIP survey areas, 2018 RC and air core drill hole locations, key interpreted geological features (i.e. interpreted Middle Vale Siltstone/Reef location, bedding traces, domal axis and faults), tenement boundaries and target areas. Regional GDA94 / MGA Zone 51 co-ordinates, 2km grid.

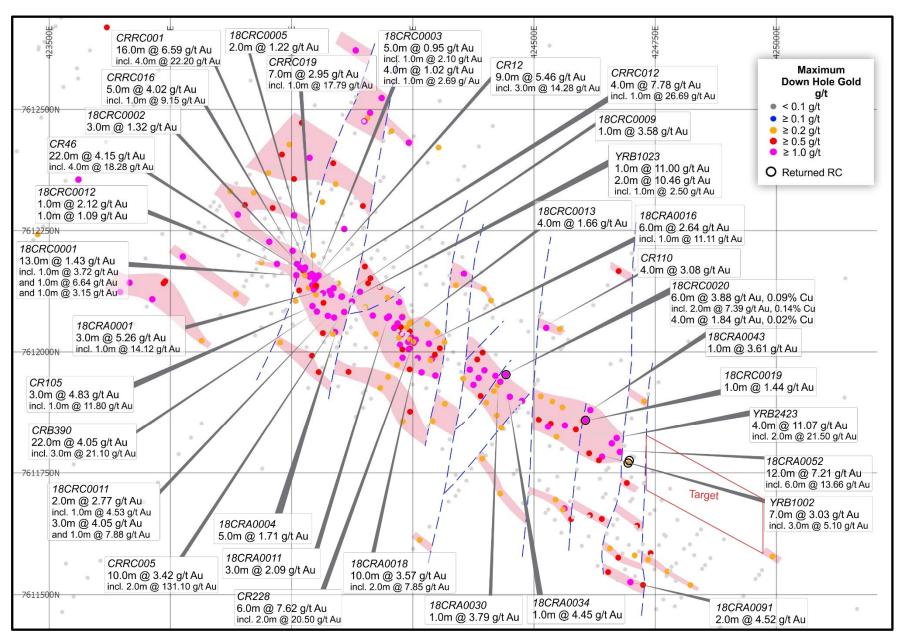
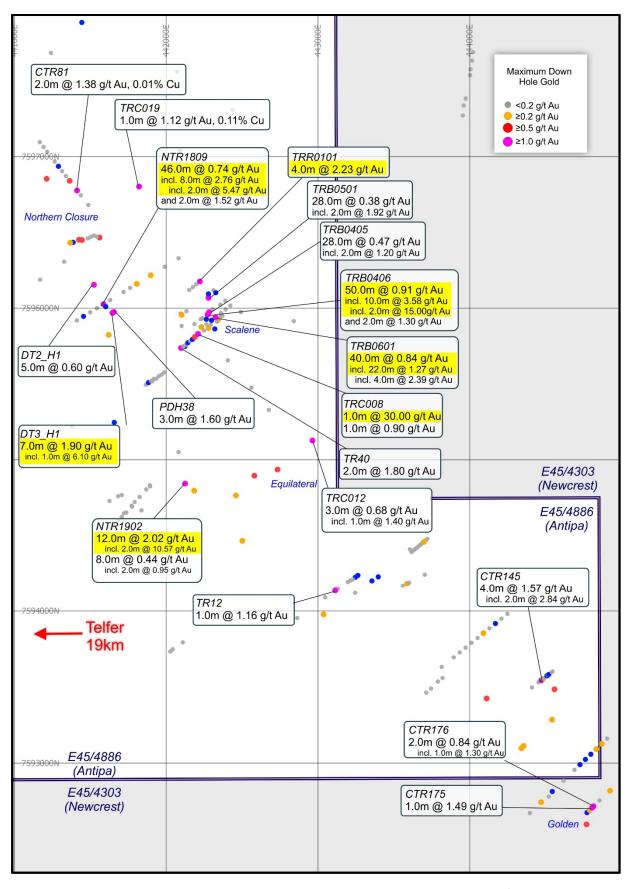



Figure 3: Plan view of the Chicken Ranch area showing maximum down hole gold values, significant drill intersections and interpreted north-south faults (dashed blues lines) displacing mineralised zones (red shaded areas). Regional GDA94 / MGA Zone 51 co-ordinates, 250m grid.

Figure 4: Minyari Dome plan view showing drill hole distribution, significant drill intersections, prospect and deposit locations. NB: Over Airborne magnetic image (50m flight-line spacing at an altitude of 30m; Pseudo-colour First Vertical Derivative) and Regional GDA94 / MGA Zone 51 co-ordinates, 1km grid.

Figures 5: Triangle area plan showing maximum down hole gold values, significant historic drill intersections and tenement boundaries. Regional GDA94 / MGA Zone 51 co-ordinates, 1km grid.

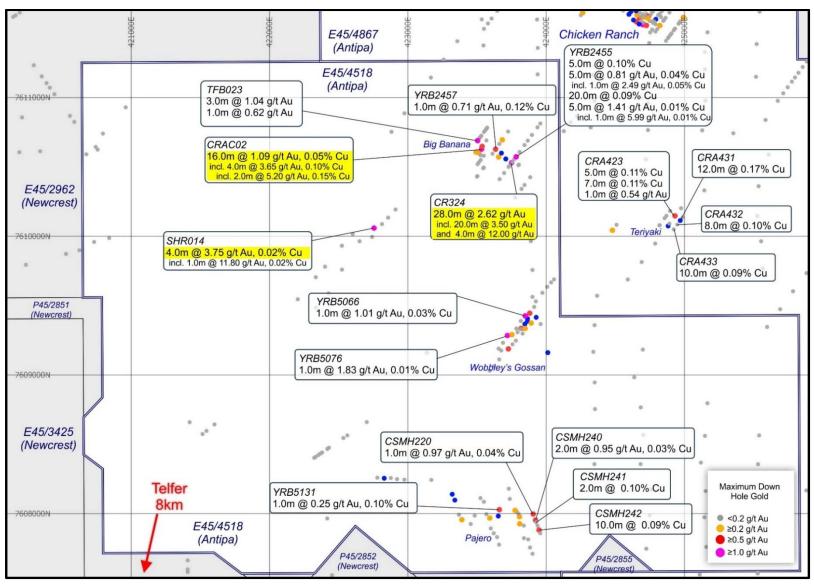


Figure 6: Pajero area plan showing maximum down hole gold values, significant historic drill intersections and tenement boundaries. Regional GDA94 / MGA Zone 51 co-ordinates, 1km grid.

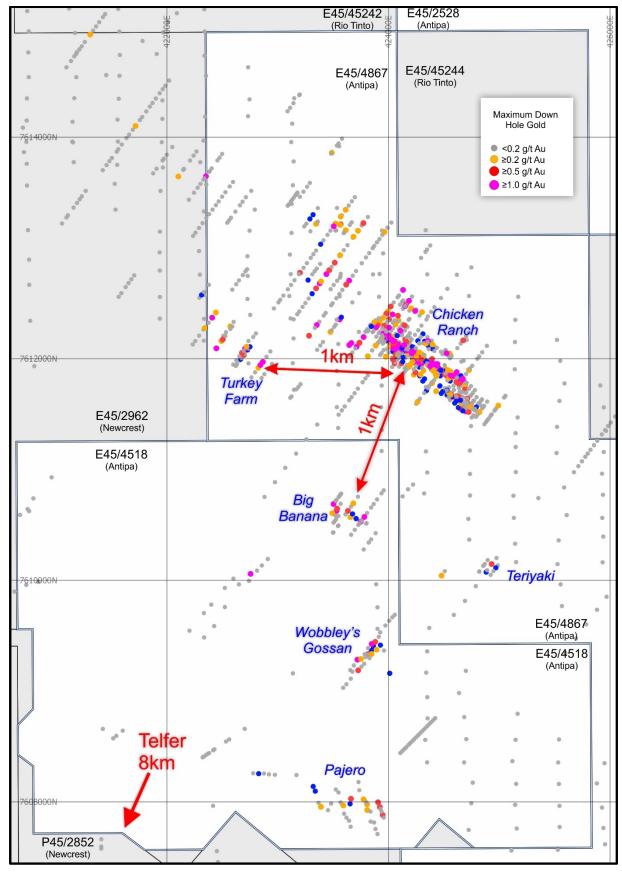


Figure 7: Chicken Ranch, including Turkey Farm, exploration licence (E45/4867) and Pajero area exploration licence (E45/4518) showing drill hole distribution and maximum downhole gold. Regional GDA94 / MGA Zone 51 co-ordinates, 2km grid.

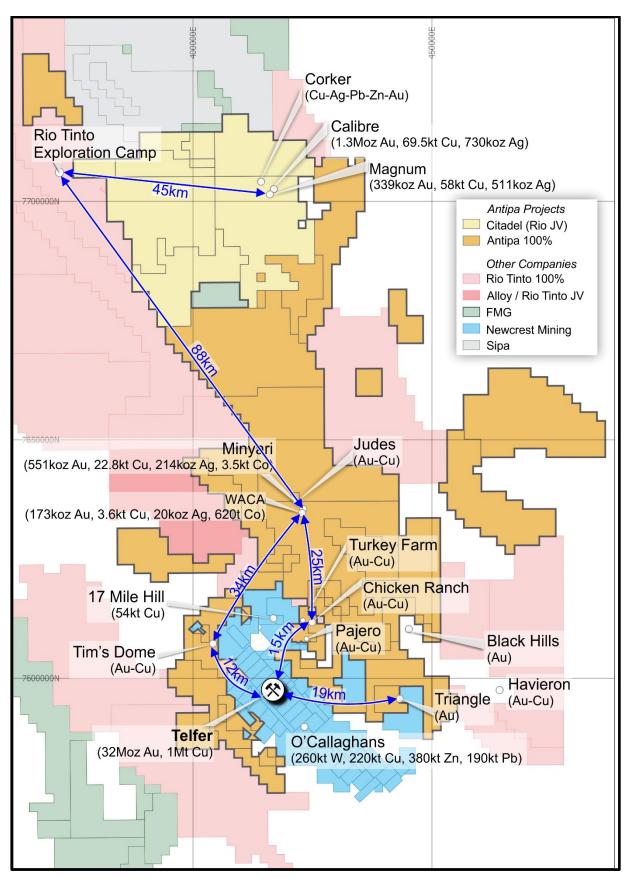


Figure 8: Plan showing location of the Minyari-WACA deposits and Mineral Resources, Tim's Dome, Chicken Ranch and Turkey Farm areas, Antipa 100% owned tenements, Newcrest Mining Ltd's Telfer Mine and O'Callaghans deposit, Greatland Gold plc's Havieron deposit and Rio Tinto's Exploration Camp. NB: Regional GDA94 / MGA Zone 51 co-ordinates, 50km grid.

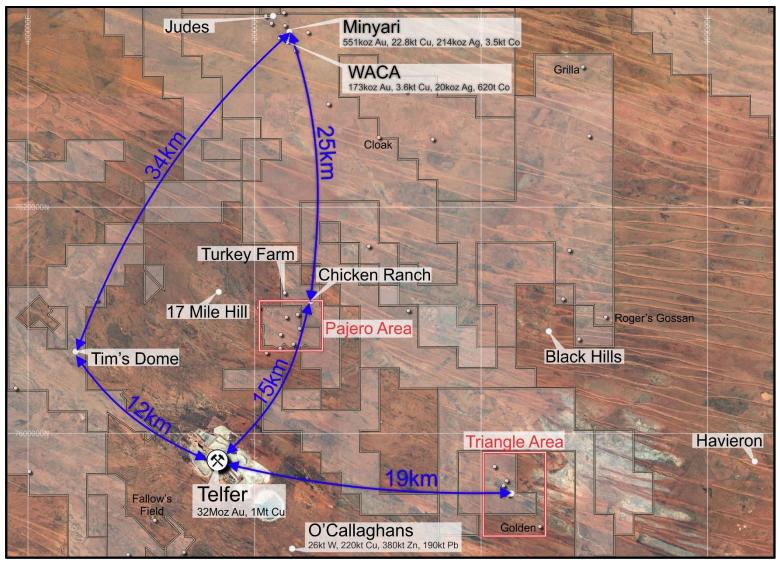
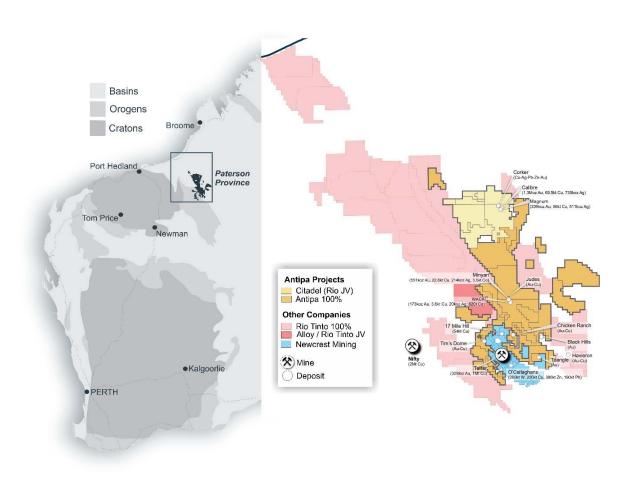



Figure 9: Satellite image showing location of the Minyari-WACA deposits and Mineral Resources, Tim's Dome, Chicken Ranch, Turkey Farm, Pajero and Triangle areas, Antipa 100% owned tenements ("frosted"), Newcrest Mining Ltd's Telfer Mine and O'Callaghans deposit and Greatland Gold plc's Havieron deposit. NB: Regional GDA94 / MGA Zone 51 co-ordinates, 20km grid.

About Antipa Minerals:

Antipa Minerals Ltd is an Australian public company which was formed with the objective of identifying under-explored mineral projects in mineral provinces which have the potential to host world-class mineral deposits, thereby offering high leverage exploration and development potential. The Company owns 5,785km² of tenements in the Paterson Province of Western Australia, including a 1,335km² package of prospective granted tenements known as the Citadel Project. The Citadel Project is located approximately 75km north of Newcrest's Telfer Gold-Copper-Silver Mine and includes the gold-copper-silver±tungsten Mineral Resources at the Calibre and Magnum deposits and high-grade polymetallic Corker deposit. Under the terms of a Farm-in and Joint Venture Agreement with Rio Tinto Exploration Pty Limited ("Rio Tinto"), a wholly owned subsidiary of Rio Tinto Limited, Rio Tinto can fund up to \$60 million of exploration expenditure to earn up to a 75% interest in Antipa's Citadel Project.

The Company has an additional 1,310km² of granted exploration licences, known as the North Telfer Project which hosts the high-grade gold-copper Minyari and WACA Mineral Resources and extends its ground holding in the Paterson Province to within 20km of the Telfer Gold-Copper-Silver Mine and 30km of the O'Callaghans tungsten and base metal deposit. The Company has also acquired, from the Mark Creasy controlled company Kitchener Resources Pty Ltd, additional exploration licences in the Paterson Province which cover 831km² and the Company owns a further 312km² of exploration licences (including both granted tenements and applications), which combined are known as the Paterson Project, which comes to within 3km of the Telfer Mine and 5km of the O'Callaghans deposit.

Competent Persons Statement – Exploration Results:

The information in this report that relates to the Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Roger Mason, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Mason is a full-time employee of the Company. Mr Mason is the Managing Director of Antipa Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Mason has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mason consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Competent Persons Statement – Mineral Resource Estimations for the Minyari-WACA Deposits:

The information in this report that relates to relates to the estimation and reporting of the Minyari-WACA deposits Mineral Resources is extracted from the report entitled "Minyari/WACA Deposits Maiden Mineral Resources" created on 16 November 2017, which is available to view on www.antipaminerals.com.au and www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

For completeness, the current Minyari Deposit and WACA Deposits Mineral Resource Statement is reproduced below:

Deposit and Au Cut-off Grade*	Resource Category	Tonnes (kt)	Au (g/t)	Cu (%)	Ag (g/t)	Co (ppm)	Au (oz)	Cu (t)	Ag (oz)	Co (t)
Minyari 0.5 Au Minyari 0.5 Au	Indicated Inferred	3,160 660	1.9 1.7	0.30 0.24	0.7 0.6	590 340	193,000 36,300	9,500 1,600	75,700 13,400	1,860 230
Minyari 0.5 Au	Sub-Total	3,820	1.9	0.29	0.7	550	229,300	11,100	89,100	2,090
Minyari 1.7 Au Minyari 1.7 Au	Indicated Inferred	230 3,650	2.6 2.6	0.29 0.30	0.9 1.0	430 370	18,800 302,400	700 10,900	6,800 117,200	100 1,360
Minyari 1.7 Au	Sub-Total	3,870	2.6	0.30	1.0	380	321,200	11,600	124,000	1,450
Minyari	Total	7,700	2.2	0.29	0.9	460	550,500	22,700	213,100	3,540
WACA 0.5 Au	Inferred	2,780	1.4	0.11	0.2	180	122,000	3,100	15,900	490
WACA 1.7 Au	Inferred	540	2.9	0.10	0.2	230	50,900	500	3,800	120
WACA	Total	3,320	1.6	0.11	0.2	190	172,800	3,700	19,700	620
Minyari + WACA Deposits	Grand Total	11,020	2.0	0.24	0.7	380	723,300	26,400	232,800	4,160

^{*0.5} Au = Using a 0.5 g/t gold cut-off grade above the 50mRL (NB: potential "Open Cut" cut-off grade)

Various information in this report which relates to Chicken Ranch Exploration Results have been extracted from the following announcements:

- Report entitled "Antipa Secures High Grade Chicken Ranch Deposit" created on 2 August 2017;
- Report entitled "Antipa to Commence Major Exploration Programme" created on 1 June 2018;
- Report entitled "RIU Explorers Conference Presentation" created on 27 March 2018;
- Report entitled "Updated Corporate Presentation April 2018" created on 12 April 2018;
- Report entitled "WA Govt Exploration Drilling Grants increase to \$710,000" created on 31 May 2018;
- Report entitled "Major Exploration Campaign Commences" created on 25 June 2018;
- Report entitled "2018 Exploration Programme Update" created on 16 July 2018;
- Report entitled "2018-19 Exploration Programme Overview and Update August" created on 15 August 2018; and
- Report entitled "Further High-Grade Gold Mineralisation at Chicken Ranch" created on 19 September 2018.

^{*1.7} Au = Using a 1.7 g/t gold cut-off grade below the 50mRL (NB: potential "Underground" cut-off grade)

Various information in this report which relates to Minyari Dome Ranch Exploration Results have been extracted from the following announcements:

- Report entitled "North Telfer Project Update on Former NCM Mining Leases" created on 3 December 2015;
- Report entitled "High Grade Gold Mineralisation at Minyari Dome" created on 8 February 2016;
- Report entitled "Minyari Deposit Drilling to Commence May 2016" created on 2 May 2016;
- Report entitled "Minyari Phase 1 Drilling Commences" created on 2 June 2016;
- Report entitled "Further Historical High-grade Gold Intersections at Minyari" created on 14 June 2016;
- Report entitled "Minyari Reprocessed IP Survey Results" created on 5 July 2016;
- Report entitled "Minyari Phase 1 Drilling Update No. 1" created on 20 July 2016;
- Report entitled "Completion of Phase 1 Minyari Deposit RC Drilling Programme" created on 9 August 2016;
- Report entitled "Minyari Drilling Update No. 3" created on 17 August 2016;
- Report entitled "New Gold Opportunity Tim's Dome South" created on 22 September 2016;
- Report entitled "Minyari Drilling Update No. 4" created on 29 September 2016;
- Report entitled "Minyari Dome Phase 2 Exploration Programme Commences" created on 31 October 2016;
- Report entitled "North Telfer and Citadel Exploration Programme Update" created on 16 November 2016;
- Report entitled "Minyari Dome Drilling Update No. 1" created on 16 December 2016;
- Report entitled "Minyari Dome and Citadel Phase 2 Update" created on 9 February 2017;
- Report entitled "Minyari Dome 2017 Exploration Programme" created on 27 March 2017;
- Report entitled "Minyari Dome 2017 Phase 1 Exploration Programme Commences" created on 13 April 2017;
- Report entitled "Minyari Dome Positive Metallurgical Test Work Results" created on 13 June 2017;
- Report entitled "High-Grade Gold Intersected at North Telfer Project Revised" created on 21 June 2017;
- Report entitled "Drilling Extends High-Grade Gold Mineralisation at WACA" created on 25 July 2017;
- Report entitled "Antipa Secures High-Grade Chicken Ranch Deposit" created on 2 August 2017;
- Report entitled "High-Grade Gold Mineralisation Strike Extension at Minyari Deposit" created on 4 August 2017;
- Report entitled "Minyari Dome Phase 1 Final Assay Results" created on 31 August 2017;
- Report entitled "Minyari/WACA Deposits Maiden Mineral Resource" created on 16 November 2017;
- Report entitled "Calibre Deposit Mineral Resource Update" created on 17 November 2017;
- Report entitled "Air Core Programme Highlights Minyari and WACA Deposit" created on 5 December 2017;
- Report entitled "Minyari Dome 2017 Air Core Drilling Results" created on 29 January 2018; and
- Report entitled "Tim's Dome 2017 Air Core Drilling Results" created on 31 January 2018;
- Report entitled "Citadel Project 2018 Exploration Programme" created on 27 March 2018;
- Report entitled "Antipa to Commence Major Exploration Programme" created on 1 June 2018;
- Report entitled "Major Exploration Programme Commences" created on 25 June 2018;
- Report entitled "2018 Exploration Programme Update" created on 16 July 2018;
- Report entitled "Minyari Dome Initial Drill Results" created on 1 August 2018;
- Report entitled "2018-19 Exploration Programme Overview and Update August" created on 15 August 2018;
- Report entitled "Minyari Dome Excellent Metallurgical Test-work Results" created on 27 August 2018;
- Report entitled "Minyari Dome Initial Drill Results" created on 1 August 2018;
- Report entitled "Thick High-grade Copper Mineralisation Intersected" created on 2 October 2018;
- Report entitled "Multiple High Priority Gold-Copper Targets Identified" created on 15 October 2018; and
- Report entitled "Chicken Ranch and Minyari Dome Drilling Update" created on 15 November 2018.

All of which are available to view on <u>www.antipaminerals.com.au</u> and <u>www.asx.com.au</u>. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements.

Forward-Looking Statements:

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Antipa Mineral Ltd's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward-looking statements. Although Antipa Minerals Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Table 1: Gold-Copper-Silver Key Assay Results for Tim's Dome, Chicken Ranch, Minyari Dome Latest 2018 Reverse Circulation Drill Holes and Triangle Area and Pajero Area Historic Drill Holes (i.e. \geq 1.0m with Au \geq 0.4 g/t and/or Cu \geq 1,000ppm and/or Ag \geq 1.0 g/t)

Hole ID	Deposit	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)	Silver (g/t)
18TDC0001	Tims Dome	9.0	14.0	5.0	0.40	0.01	0.00
18TDC0002	Tims Dome	37.0	38.0	1.0	1.03	0.01	0.00
18TDC0003	Tims Dome	40.0	44.0	4.0	0.49	0.01	0.00
18TDC0003	Tims Dome	112.0	113.0	1.0	0.58	0.05	0.24
18TDC0004	Tims Dome	52.0	56.0	4.0	0.52	0.00	0.00
18TDC0004	Tims Dome	129.0	139.0	10.0	0.30	0.56	2.14
	including	130.0	133.0	3.0	0.30	1.25	5.63
	also including	130.0	131.0	1.0	0.61	2.16	11.57
	including	135.0	138.0	3.0	0.53	0.41	1.06
18TDC0004	Tims Dome	147.0	149.0	2.0	1.23	0.60	1.42
18TDC0005	Tims Dome	72.0	73.0	1.0	0.59	0.01	0.03
18TDC0005	Tims Dome	82.0	83.0	1.0	0.64	0.00	0.13
18TDC0005	Tims Dome	90.0	106.0	16.0	0.45	0.01	0.13
	including	90.0	98.0	8.0	0.56	0.01	0.16
18TDC0009	Tims Dome	72.0	76.0	4.0	0.43	0.00	0.07
18TDC0010	Tims Dome	188.0	189.0	1.0	0.02	0.35	3.16
18TDC0011	Tims Dome	176.0	180.0	4.0	0.00	0.01	1.45
18TDC0012	Tims Dome	70.0	75.0	5.0	0.40	0.01	0.08
	including	70.0	71.0	1.0	0.72	0.01	0.10
18TDC0015	Tims Dome	144.0	145.0	1.0	0.52	0.02	0.08
18TDC0015	Tims Dome	172.0	178.0	6.0	0.54	0.01	0.0
	including	175.0	176.0	1.0	2.21	0.01	0.08
18TDC0016	Tims Dome	52.0	74.0	22.0	0.47	0.03	0.14
	including	52.0	55.0	3.0	1.10	0.02	0.10
	including	52.0	66.0	14.0	0.54	0.06	0.27
18TDC0018	Tims Dome	44.0	72.0	28.0	0.62	0.04	0.23
	including	53.0	59.0	6.0	1.13	0.06	0.24
	including	65.0	66.0	1.0	1.41	0.11	0.15
18TDC0018	Tims Dome	85.0	92.0	7.0	0.98	0.02	0.16
18TDC0019	Tims Dome	147.0	159.0	12.0	0.68	0.04	0.09
	including	147.0	148.0	1.0	1.72	0.12	0.10
	including	154.0	159.0	5.0	1.17	0.02	0.16
18TDC0020	Tims Dome	87.0	88.0	1.0	0.05	0.03	1.12
18TDC0021	Tims Dome	139.0	147.0	8.0	0.72	0.04	0.14
	including	142.0	144.0	2.0	1.41	0.05	0.18
18TDC0021	Tims Dome	160.0	182.0	22.0	0.85	0.04	0.10
	including	164.0	170.0	6.0	1.06	0.05	0.10
	including	177.0	181.0	4.0	1.90	0.02	0.23
18TDC0024	Tims Dome	75.0	76.0	1.0	0.45	0.02	0.33
18TDC0024	Tims Dome	104.0	108.0	4.0	0.94	0.01	0.40
18TDC0025	Tims Dome	148.0	152.0	4.0	0.52	0.00	0.40
18TDC0025	Tims Dome	160.0	165.0	5.0	0.82	0.02	0.44
	including	161.0	162.0	1.0	2.80	0.04	0.45
18TDC0026	Tims Dome	53.0	60.0	7.0	0.43	0.01	0.49
18TDC0030	Tims Dome	28.0	32.0	4.0	1.10	0.01	0.2
18TDC0033	Tims Dome	94.0	95.0	1.0	0.45	0.01	0.02
18TDC0033	Tims Dome	109.0	117.0	8.0	1.81	0.02	0.04
	including	111.0	112.0	1.0	8.18	0.04	0.10
18TDC0034	Tims Dome	87.0	88.0	1.0	0.48	0.05	0.18
18TDC0034	Tims Dome	151.0	158.0	7.0	0.39	0.15	0.20
10100004	including	151.0	152.0	1.0	1.16	0.13	0.10
	including	156.0	152.0	2.0	0.60	0.50	0.10
18TDC0034	Tims Dome	165.0	166.0	1.0	0.50	0.30	0.3
18TDC0034	Tims Dome	79.0	85.0	6.0	0.50	0.02	0.1
10100000	including	84.0	85.0	1.0	1.41	0.03	0.1
18TDC0035	Tims Dome	111.0	112.0	1.0	2.55	0.04	0.1
18TDC0035	Tims Dome	92.0	96.0	4.0	1.70	0.03	0.1
18TDC0036	Tims Dome						0.1
10100000		109.0	128.0	19.0	0.70	0.01	
10TDC0022	including	116.0	128.0	12.0	0.97	0.01	0.1
18TDC0038	Tims Dome	174.0	175.0	1.0	0.65	0.03	0.2
18TDC0039	Tims Dome	164.0	168.0	4.0	1.51	0.01	0.1
18TDC0041	Tims Dome	4.0	64.0	60.0	0.58	0.01	0.09
	including	4.0	8.0	4.0	1.22	0.00	0.0
	including	36.0	52.0	16.0	0.93	0.01	0.07
	including	59.0	60.0	1.0	3.44	0.02	0.06

Hole ID	Deposit	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)	Silver (g/t)
18TDA0135	Tims Dome	0.0	2.0	2.0	4.00	0.00	0.2
L8MYC0185	Judes	120.0	141.0	21.0	0.04	0.07	0.1
	including	120.0	122.0	2.0	0.14	0.17	0.1
	including	130.0	132.0	2.0	0.05	0.11	0.2
	including	138.0	141.0	3.0	0.06	0.16	0.4
8MYC0186	Judes	170.0	173.0	3.0	0.61	0.08	0.1
	including	171.0	172.0	1.0	1.05	0.12	0.3
L8MYC0187	Minyari South	43.0	55.0	12.0	0.36	0.09	0.:
	including	49.0	50.0	1.0	1.95	0.10	0.
	including	54.0	55.0	1.0	0.74	0.08	0.
L8MYC0167	Judes	167.0	180.0	13.0	0.10	0.25	0.4
IOIVITCO107	including	168.0	169.0	1.0	0.40	0.30	0.
0000010	Chicken Ranch						
L8CRC0019		79.0	80.0	1.0	1.44	0.00	0.
L8CRC0020	Chicken Ranch	82.0	88.0	6.0	3.88	0.09	2.
	including	82.0	84.0	2.0	7.39	0.14	2.
.8CRC0020	Chicken Ranch	120.0	124.0	4.0	1.84	0.02	0.
TR81	Triangle	4.00	6.00	2.00	1.38	0.01	
RC019	Triangle	52.00	53.00	1.00	1.12	0.11	
NTR1809	Triangle	24.00	70.00	46.00	0.74	0.02	
	including	26.00	34.00	8.00	2.76	0.02	
	also including	28.00	30.00	2.00	5.47	0.02	
	including	46.00	48.00	2.00	1.52	0.01	
RR0101	Triangle	4.00	8.00	4.00	2.23	0.00	
	Triangle						
RB0501		4.00	32.00	28.00	0.38	0.00	
	including	22.00	24.00	2.00	1.92	0.00	
RB0405	Triangle	20.00	48.00	28.00	0.47	0.00	
	including	36.00	38.00	2.00	1.20	0.00	
RB0406	Triangle	8.00	58.00	50.00	0.91	0.00	
	including	8.00	18.00	10.00	3.58	0.00	
	also including	8.00	10.00	2.00	15.00	0.00	
	including	46.00	48.00	2.00	1.30	0.00	
RB0601	Triangle	18.00	58.00	40.00	0.84	0.00	
REGOOT	including	24.00	46.00	22.00	1.27	0.00	
	also including	28.00	32.00	4.00	2.39	0.00	
-D.40							
R40	Triangle	18.00	20.00	2.00	1.80	0.00	
DT2_H1	Triangle	21.00	26.00	5.00	0.60	0.00	
DT3_H1	Triangle	17.00	18.00	1.00	0.60	0.00	
DT3_H1	Triangle	23.00	30.00	7.00	1.90	0.00	
PDH38	Triangle	15.00	18.00	3.00	1.60	0.00	
RC012	Triangle	89.00	92.00	3.00	0.68	0.02	
	including	91.00	92.00	1.00	1.40	0.02	
	including	10.00	12.00	2.00	10.57	0.00	
NTR1902	Triangle	4.00	16.00	12.00	2.02	0.00	
NTR1902	Triangle	48.00	56.00	8.00	0.44	0.04	
VIIVIJOZ	including	54.00	56.00	2.00	0.95	0.04	
D12							
R12	Triangle	25.00	26.00	1.00	1.16	0.01	
TR145	Triangle	6.00	10.00	4.00	1.57	0.01	
	including	6.00	8.00	2.00	2.84	0.01	
TR175	Triangle	6.00	7.00	1.00	1.49	0.00	
TR176	Triangle	6.00	8.00	2.00	0.84	0.00	
	including	6.00	7.00	1.00	1.30	0.00	
R324	Pajero	9.0	37.0	28.0	2.62	0.00	
	including	13.0	17.0	4.0	12.00	0.00	
	including	13.0	33.0	20.0	3.50	0.00	
CRA423	Pajero	45.0	50.0	5.0	0.00	0.11	
	Pajero	55.0	56.0	1.0	0.54	0.11	
CRA423							
CRA423	Pajero	58.0	65.0	7.0	0.00	0.11	
CRA431	Pajero	36.0	48.0	12.0	0.07	0.17	
CRA432	Pajero	48.0	56.0	8.0	0.04	0.10	
CRA433	Pajero	48.0	58.0	10.0	0.02	0.09	
CRAC02	Pajero	4.0	6.0	2.0	0.42	0.04	
CRAC02	Pajero	46.0	62.0	16.0	1.09	0.05	
	including	48.0	52.0	4.0	3.65	0.10	
	also including	50.0	52.0	2.0	5.20	0.15	
SMH220	Pajero	21.0	22.0	1.0	0.97	0.13	
SMH240	Pajero	6.0	8.0	2.0	0.95	0.03	
CSMH241	Pajero	8.0	10.0	2.0	0.00	0.10	
CSMH242	Pajero	12.0	22.0	10.0	0.04	0.09	
HR014	Pajero	2.0	6.0	4.0	3.75	0.02	
	including	4.0	5.0	1.0	11.80	0.02	
				2.0	0.51	0.00	

Hole ID	Deposit	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)	Silver (g/t)
TFB023	Pajero	27.0	30.0	3.0	1.04		-
TFB023	Pajero	31.0	32.0	1.0	0.62	0.00	-
YRB2455	Pajero	61.0	66.0	5.0	0.01	0.10	-
YRB2455	Pajero	66.0	71.0	5.0	0.81	0.04	-
	including	66.0	67.0	1.0	2.49	0.05	-
YRB2455	Pajero	83.0	103.0	20.0	0.01	0.09	-
YRB2455	Pajero	113.0	118.0	5.0	1.41	0.01	-
	including	114.0	115.0	1.0	5.99	0.01	-
YRB2457	Pajero	54.0	55.0	1.0	0.71	0.12	-
YRB5066	Pajero	39.0	40.0	1.0	1.01	0.03	-
YRB5076	Pajero	16.0	17.0	1.0	1.83	0.01	-
YRB5131	Pajero	59.0	60.0	1.0	0.25	0.10	-

Notes (Intersection Table above): Table 1 Intersections are composited from individual assays using the following criteria:

Intersection Interval = Nominal cut-off grade scenarios:

- ≥ 0.4 g/t gold which also satisfy a minimum down-hole intersection of ≥ 1.0 gmm gold ((i.e. Au g/t x down hole intersection metres ≥ 1.0); and/or
- \geq 1.0 g/t silver which also satisfy a minimum down-hole intersection of \geq 4 gmm silver (i.e. Ag g/t x down hole intersection metres \geq 4.0); and/or
- \geq 0.10% copper which also satisfy a minimum down-hole interval of 1.0m; and/or
- NB: In some instances, zones grading less than the cut-off grade/s have been included in calculating composites or to highlight mineralisation trends.
- NB: For the purpose of highlighting significant (generally isolated) results some intersections may be included in Table 2 which do not satisfy the criteria above.
- No top-cutting has been applied to assay results for gold, copper, cobalt or silver;
 * Unless specified otherwise where a 27 g/t gold top-cut has been applied.
- Intersections are down hole lengths, true widths not known with certainty.

Table 2a: Tim's Dome – 2018 Air Core Drill Hole Collar Locations (MGA Zone 51/GDA 94)

Hole ID	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
18TDA0128	Tims Dome South	7,608,176	403,397	300	26	225	-55	Received
18TDA0129	Tims Dome South	7,608,193	403,415	301	28	225	-55	Received
18TDA0130	Tims Dome South	7,608,228	403,452	300	28	225	-55	Received
18TDA0131	Tims Dome South	7,608,262	403,488	300	36	225	-55	Received
18TDA0132	Tims Dome South	7,608,297	403,525	299	27	225	-55	Received
18TDA0133	Tims Dome South	7,608,198	403,200	302	31	315	-55	Received
18TDA0134	Tims Dome South	7,608,182	403,220	301	31	315	-55	Received
18TDA0135	Tims Dome South	7,608,169	403,243	302	30	315	-55	Received
18TDA0136	Tims Dome South	7,608,153	403,263	302	30	315	-55	Received
18TDA0137	Tims Dome South	7,608,136	403,281	300	30	315	-55	Received
18TDA0138	Tims Dome South	7,608,116	403,296	300	31	315	-55	Received
18TDA0139	Tims Dome South	7,608,233	403,274	302	25	225	-55	Received
18TDA0140	Tims Dome South	7,608,250	403,293	302	25	225	-55	Received
18TDA0141	Tims Dome South	7,608,266	403,310	300	25	225	-55	Received
18TDA0142	Tims Dome South	7,608,286	403,331	300	25	225	-55	Received
18TDA0143	Tims Dome South	7,608,321	403,367	299	25	225	-55	Received
18TDA0144	Tims Dome South	7,608,355	403,403	299	25	225	-55	Received

Table 2b: Tim's Dome – 2018 RC Drill Hole Collar Locations (MGA Zone 51/GDA 94)

Hole ID	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
18TDC0001	Tims Dome South	7,608,166	403,130	304	105	45.2	-55	Received
18TDC0002	Tims Dome South	7,608,132	403,093	304	99	45.2	-55	Received
18TDC0003	Tims Dome South	7,608,097	403,057	304	123	45.2	-55	Received
18TDC0004	Tims Dome South	7,607,914	403,265	308	171	45.2	-55	Received
18TDC0005	Tims Dome South	7,607,879	403,228	306	147	45.2	-55	Received
18TDC0006	Tims Dome	7,611,117	402,488	288	117	198.5	-55	Received
18TDC0007	Tims Dome	7,611,151	402,524	287	117	198.5	-55	Received
18TDC0008	Tims Dome	7,610,882	402,606	292	141	198.5	-55	Received
18TDC0009	Tims Dome	7,610,790	402,141	291	99	198.5	-55	Received
18TDC0010	Tims Dome South	7,608,937	402,922	296	249	225.2	-55	Received
18TDC0011	Tims Dome South	7,608,971	402,959	296	249	225.2	-65	Received
18TDC0012	Tims Dome South	7,607,952	403,159	305	195	45.2	-55	Received
18TDC0013	Tims Dome South	7,608,366	403,598	299	99	225.2	-55	Received
18TDC0014	Tims Dome South	7,608,400	403,635	297	99	225.2	-55	Received
18TDC0015	Tims Dome South	7,606,719	404,264	302	201	45.2	-55	Received
18TDC0016	Tims Dome South	7,606,794	404,254	301	93	45.2	-65	Received
18TDC0017	Tims Dome South	7,606,777	404,236	301	141	45.2	-60	Received
18TDC0018	Tims Dome South	7,606,820	404,229	301	105	45.2	-60	Received
18TDC0019	Tims Dome South	7,606,664	404,290	302	159	45.2	-55	Received
18TDC0020	Tims Dome South	7,606,594	404,362	301	171	45.2	-55	Received
18TDC0021	Tims Dome South	7,606,571	404,338	301	201	45.2	-55	Received
18TDC0022	Tims Dome South	7,607,275	403,833	294	87	45.2	-55	Received
18TDC0023	Tims Dome South	7,607,691	403,578	304	100	45.2	-55	Received
18TDC0024	Tims Dome South	7,607,640	403,524	304	153	45.2	-55	Received
18TDC0025	Tims Dome South	7,607,554	403,432	304	207	45.2	-55	Received
18TDC0026	Tims Dome South	7,608,004	403,214	304	153	45.2	-55	Received
18TDC0027	Tims Dome South	7,607,965	403,320	304	153	45.2	-55	Received
18TDC0028	Tims Dome South	7,608,035	402,771	304	100	45.2	-55	Received
18TDC0029	Tims Dome South	7,608,769	402,561	308	100	45.2	-55	Received
18TDC0030	Tims Dome South	7,608,735	402,525	309	100	45.2	-55	Received
18TDC0031	Tims Dome South	7,609,355	403,183	293	201	18.5	-55	Received
18TDC0032	Tims Dome South	7,608,767	403,841	291	153	45.2	-55	Received
18TDC0033	Tims Dome South	7,606,562	404,386	301	159	45.2	-55	Received
18TDC0034	Tims Dome South	7,606,835	404,164	302	168	45.2	-60	Received
18TDC0035	Tims Dome South	7,606,900	404,154	301	123	45.2	-60	Received
18TDC0036	Tims Dome South	7,606,929	404,095	302	171	45.2	-55	Received
18TDC0037	Tims Dome South	7,606,946	404,056	302	153	45.2	-60	Received
18TDC0038	Tims Dome South	7,606,972	404,031	302	195	45.2	-60	Received
18TDC0039	Tims Dome South	7,607,002	403,988	302	195	45.2	-62	Received
18TDC0040	Tims Dome South	7,606,616	404,389	301	93	45.2	-57	Received
18TDC0041	Tims Dome South	7,606,821	404,295	302	129	198.5	-55	Received

Table 2c: Chicken Ranch – 2018 RC Drill Hole Collar Locations (MGA Zone 51/GDA 94)

Hole ID	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
18CRC0001	Chicken Ranch	7,612,180	424,025	263	60	215.0	-60	Received
18CRC0002	Chicken Ranch	7,612,190	424,040	262	90	215.0	-60	Received
18CRC0003	Chicken Ranch	7,612,170	424,050	263	60	215.0	-60	Received
18CRC0004	Chicken Ranch	7,612,185	424,055	262	90	215.0	-60	Received
18CRC0005	Chicken Ranch	7,612,133	424,000	265	123	35.0	-60	Received
18CRC0006	Chicken Ranch	7,612,112	423,985	268	201	35.0	-60	Received
18CRC0007	Chicken Ranch	7,612,076	423,999	268	201	35.0	-60	Received
18CRC0008	Chicken Ranch	7,612,079	424,023	268	171	35.0	-60	Received
18CRC0009	Chicken Ranch	7,612,093	424,089	265	183	35.0	-60	Received
18CRC0010	Chicken Ranch	7,612,073	424,074	267	123	35.0	-60	Received
18CRC0011	Chicken Ranch	7,612,048	424,057	267	183	35.0	-60	Received
18CRC0012	Chicken Ranch	7,612,164	423,958	267	153	35.0	-55	Received
18CRC0013	Chicken Ranch	7,612,063	424,246	267	171	215.0	-60	Received
18CRC0014	Chicken Ranch	7,612,040	424,267	261	81	215.0	-60	Received

Hole ID	Deposit / Target Area	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
18CRC0015	Chicken Ranch	7,612,030	424,290	267	123	215.0	-60	Received
18CRC0016	Chicken Ranch	7,611,943	424,433	267	45	215.0	-60	Received
18CRC0017	Chicken Ranch	7,611,782	424,701	262	40	215.0	-60	Received
18CRC0018	Chicken Ranch	7,611,802	424,715	262	99	215.0	-60	Received
18CRC0019	Chicken Ranch	7,611,897	424,631	263	153	215.0	-55	Received
18CRC0020	Chicken Ranch	7,611,988	424,465	266	183	215.0	-60	Received

Table 2d: Minyari Dome – 2018 RC Drill Hole Collar Locations (MGA Zone 51/GDA 94)

Hole ID	Deposit / Target Area		Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
18MYC0140	Minyari North	101,100	7,635,763	422,784	280	99	58.2	-55	Received
18MYC0141	Minyari North	101,100	7,635,761	422,780	280	201	58.2	-55	Received
18MYC0142	Minyari West	100,800	7,635,307	422,612	277	153	58.2	-55	Received
18MYC0143	Minyari South	100,350	7,635,019	423,013	278	153	57.2	-57	Received
18MYC0144	Minyari South	100,350	7,634,980	422,950	278	147	58.2	-55	Received
18MYC0145	Minyari South	100,300	7,634,972	423,029	277	153	58.2	-55	Received
18MYC0146	Minyari South	100,300	7,634,918	422,943	280	153	58.2	-55	Received
18MYC0147	Minyari South	100,300	7,634,863	422,859	279	255	58.2	-55	Received
18MYC0148	Minyari South	100,300	7,634,971	423,023	277	183	238.2	-60	Received
18MYC0149	Minyari South	100,250	7,634,887	422,990	280	99	238.2	-60	Received
18MYC0150	Minyari North	101,000	7,635,698	422,872	275	195	58.2	-55	Received
18MYC0151	Minyari North	101,000	7,635,645	422,785	276	261	58.2	-55	Received
18MYC0152	Minyari North	101,000	7,635,593	422,700	276	297	58.2	-55	Received
18MYC0153	Minyari West	100,800	7,635,266	422,552	277	165	58.2	-55	Received
18MYC0154	WACA South	99,550	7,634,203	423,211	277	171	58.2	-55	Received
18MYC0155	WACA South	99,550	7,634,159	423,127	279	159	58.2	-55	Received
18MYC0156	WACA South	99,600	7,634,248	423,127	277	165	58.2	-55	Received
18MYC0157	WACA South	99,200	7,633,983	423,522	277	153	58.2	-55	Received
18MYC0158	WACA South	99,400	7,634,044	423,236	281	153	58.2	-55	Received
18MYC0159	WACA South	100,000	7,634,530	422,888	283	338	58.2	-55	Received
18MYC0160	Minyari South	100,000	7,634,940	422,886	282	159	58.2	-55	Received
18MYC0161	Minyari South	100,330	7,634,940	422,880	279	207	58.2	-55	Received
18MYC0161	Fozzie	100,400		422,030	273	153	58.2	-55	
		•	7,634,821 7,634,716	·	280	153	58.2		Received
18MYC0163	WACA North	100,350	7,634,716	422,525	272	105	58.2	-55	Received
18MYC0164	Judes	102,750		421,735				-60	Received
18MYC0165	Judes	102,750	7,637,023	421,692	271	117	58.2	-60	Received
18MYC0166	Judes	102,750	7,636,997	421,650	270	147	58.2	-60	Received
18MYC0167	Judes	102,750	7,636,971	421,607	265	231	58.2	-60	Received
18MYC0168	Minyari South	100,250	7,634,821	422,883	281	153	58.2	-55	Received
18MYC0169	Minyari South	100,400	7,635,054	422,974	277	147	58.2	-55	Received
18MYC0170	Minyari East	100,590	7,635,426	423,214	282	147	58.2	-55	Received
18MYC0171	Gonzo	102,200	7,636,256	421,498	272	249	58.2	-55	Received
18MYC0172	Minyari North	101,300	7,636,172	423,068	282	147	58.2	-55	Received
18MYC0173	Minyari North	101,300	7,636,029	422,839	278	153	58.2	-55	Received
18MYC0174	Minyari North	101,300	7,635,977	422,754	276	165	58.2	-55	Received
18MYC0175	Minyari North	101,500	7,636,078	422,538	273	105	58.2	-55	Received
18MYC0176	Minyari North	101,500	7,636,025	422,453	278	105	58.2	-55	Received
18MYC0177	-	102,400	7,636,647	421,749	268	153	58.2	-55	Received
18MYC0178	-	102,400	7,636,541	421,580	272	153	58.2	-55	Received
18MYC0179	-	102,400	7,636,436	421,410	270	153	58.2	-55	Received
18MYC0180	AEM	107,600	7,640,087	417,436	263	201	58.2	-60	Received
18MYC0181	AEM	107,600	7,639,992	417,283	262	201	58.2	-55	Received
18MYC0182	Judes West	102,940	7,636,868	421,083	265	105	58.2	-55	Received
L8MYC0183	Judes West	102,940	7,636,842	421,040	269	105	58.2	-55	Received
18MYC0184	Judes West	102,940	7,636,816	420,998	270	105	58.2	-55	Received
18MYC0185	Judes	102,700	7,636,952	421,664	270	153	56.4	-60	Received
18MYC0186	Judes	102,700	7,636,931	421,630	270	189	56.4	-60	Received
18MYC0187	Minyari South	100,350	7,635,002	422,988	270	93	138.2	-60	Received
18MYC0188	Minyari South	100,350	7,634,980	422,950	278	70	238.2	-60	Received
18MYC0189	Minyari South	100,250	7,634,887	422,990	2789	100	56.0	-60	Received

Table 2e: Triangle & Pajero Area Dome – Historic Drill Hole Collar Locations (MGA Zone 51/GDA 94)

Hole ID	Deposit / Target Area	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)
BL89-1	Pajero	UNK	7,609,161	424,012	274	62.5	0	-90
BL89-3	Pajero	UNK	7,609,161	424,012	274	89.65	0	-90
CDR12031	Pajero	UNK	7,610,930	420,960	279	198	222	-60
CDR12032	Pajero	UNK	7,610,790	420,840	277	204	222	-60
CDR12033	Pajero	UNK	7,610,630	420,710	283	200	222	-60
CR269	Pajero	RAB	7,610,995	425,688	271	50	215	-60
CR270	Pajero	RAB	7,611,036	425,718	269	50	215	-60
CR271	Pajero	RAB	7,611,076	425,748	268	50	215	-60
CR272	Pajero	RAB	7,611,117	425,778	268	50	215	-60
CR273	Pajero	RAB	7,611,157	425,808	268	50	215	-60
CR274	Pajero	RAB	7,611,198	425,838	271	50	215	-60
CR275	Pajero	RAB	7,611,238	425,868	269	50	215	-60
CR317	Pajero	RAB	7,610,799	423,948	268	50	35	-60
CR318	Pajero	RAB	7,610,767	423,924	269	60	35	-60
CR319	Pajero	RAB	7,610,726	423,895	273	50	35	-60
CR320	Pajero	RAB	7,610,686	423,865	273	50	35	-60
CR321	Pajero	RAB	7,610,645	423,835	274	63	35	-60
CR322	Pajero	RAB	7,610,605	423,806	280	50	35	-60
CR323	Pajero	RAB	7,610,564	423,776	282	50	35	-60
CR324	Pajero	RAB	7,610,524	423,746	279	50	35	-60
CR325	Pajero	RAB	7,610,484	423,717	279	50	35	-60
CR326	Pajero	RAB	7,610,443	423,687	278	50	35	-60
CR326A	Pajero	RAB	7,610,504	423,731	279	50	35	-60
CR327	Pajero	RAB	7,610,403	423,657	279	50	35	-60
CR327A	Pajero	RAB	7,610,544	423,761	281	50	35	-60
CR328	Pajero	RAB	7,610,534	423,691	280	75	35	-60
CR329	Pajero	RAB	7,610,554	423,706	280	50	35	-60
CR330	Pajero	RAB	7,610,494	423,787	281	62	35	-60
CR331	Pajero	RAB	7,610,515	423,802	280	50	35	-60
CR332	Pajero	RAB	7,610,563	423,651	282	74	35	-60
CR333	Pajero	RAB	7,610,583	423,665	280	65	35	-60
CRA403	Pajero	AC	7,610,753	422,882	277	60	0	-90
CRA404	Pajero	AC	7,610,886	422,976	277	60	0	-90
CRA405	Pajero	AC	7,611,016	423,069	274	60	0	-90
CRA405	Pajero	AC	7,611,010	423,009	274	60	0	-90
CRA400	Pajero	AC	7,611,144	423,100	271	60	0	-90
CRA409	Pajero	AC	7,610,865	423,233	274	64	0	-90
CRA410	•	AC		•	267	77	0	-90
	Pajero Pajero		7,610,822	424,177				-90
CRA411 CRA412	•	AC	7,610,758	424,128	273	57 65	0	
	Pajero	AC	7,610,688	424,087	273	65	0	-90
CRA413	Pajero	AC	7,610,628	424,037	274	27	0	-90
CRA414	Pajero	AC	7,610,558	423,989	278	63	0	-90
CRA415	Pajero	AC	7,609,559	424,498	271	63	0	-90
CRA416	Pajero	AC	7,609,639	424,554	271	62	0	-90
CRA417	Pajero	AC	7,609,688	424,590	270	61	0	-90
CRA418	Pajero	AC	7,609,814	424,691	273	59	0	-90
CRA419	Pajero	AC	7,609,947	424,788	272	77	0	-90
CRA420	Pajero	AC	7,610,074	424,882	270	76.2	0	-90
CRA421	Pajero	AC	7,610,202	424,975	272	52	0	-90
CRA422	Pajero	AC	7,610,332	425,071	270	40	0	-90
CRA423	Pajero	AC	7,610,124	424,916	273	75	33	-60
CRA424	Pajero	AC	7,610,083	424,886	271	41	33	-60
CRA425	Pajero	AC	7,610,170	424,888	272	52	33	-60
CRA426	Pajero	AC	7,610,133	424,860	272	73	33	-60
CRA427	Pajero	AC	7,610,105	424,840	269	71	33	-60
CRA428	Pajero	AC	7,610,073	424,816	268	19	33	-60
CRA429	Pajero	AC	7,610,066	424,811	268	33	33	-60
CRA430	Pajero	AC	7,610,126	424,981	269	27	33	-60
CRA431	Pajero	AC	7,610,094	424,957	271	59	33	-60
CRA432	Pajero	AC	7,610,061	424,933	273	59	33	-60
CRA433	Pajero	AC	7,610,029	424,909	271	58	33	-60

Hole ID	Deposit / Target Area	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)
CRA435	Pajero	AC	7,609,734	425,882	263	77	0	-90
CRA436	Pajero	AC	7,609,603	425,785	262	71	0	-90
CRA437	Pajero	AC	7,609,474	425,692	263	50	0	-90
CRA438	Pajero	AC	7,609,346	425,598	267	53	0	-90
CRAC01	Pajero	AC	7,610,591	423,506	279	80	35	-60
CRAC02	Pajero	AC	7,610,607	423,518	277	80	35	-60
CRAC03	Pajero	AC	7,610,359	423,836	279	80	35	-60
CRAC04	Pajero	AC	7,610,319	423,806	280	80	35	-60
CRAC05	Pajero	AC	7,610,278	423,776	277	62	35	-60
CRACO6	Pajero	AC	7,610,400	423,866	275	80	35	-60
CRAC07 CRAC08	Pajero	AC AC	7,610,061 7,610,020	424,493 424,463	273 273	76 71	35 35	-60 -60
CRAC14	Pajero Pajero	AC	7,610,620	424,465	273	68	35	-60
CRAC14	Pajero	AC	7,610,564	423,490	273	80	35	-60
CSMH100	Pajero	RAB	7,608,858	422,186	289	28	230.2	-60
CSMH101	Pajero	RAB	7,608,871	422,202	287	28	230.2	-60
CSMH102	Pajero	RAB	7,607,671	421,411	298	28	180	-60
CSMH103	Pajero	RAB	7,607,651	421,411	298	30	0	-50
CSMH104	Pajero	RAB	7,607,631	421,411	296	25	0	-54
CSMH105	Pajero	RAB	7,607,611	421,411	296	25	0	-60
CSMH106	Pajero	RAB	7,607,591	421,411	298	25	0	-62
CSMH107	Pajero	RAB	7,607,571	421,411	300	25	0	-61
CSMH108	Pajero	RAB	7,607,551	421,411	300	25	0	-60
CSMH123	Pajero	RAB	7,607,532	421,407	298	25	0	-59
CSMH124	Pajero	RAB	7,607,553	421,407	300	19	0	-60
CSMH125	Pajero	RAB	7,607,574	421,408	300	25	0	-60
CSMH126	Pajero	RAB	7,607,595	421,408	298	25	0	-60
CSMH127	Pajero	RAB	7,607,616	421,408	296	25	0	-60
CSMH128	Pajero	RAB	7,607,637	421,408	298	25	0	-60
CSMH129	Pajero	RAB	7,607,658	421,408	298	25	0	-60
CSMH130	Pajero	RAB	7,607,679	421,408	298	25	0	-60
CSMH214	Pajero	RAB	7,608,098	423,870	284	25	339	-60
CSMH215	Pajero	RAB	7,608,079	423,876	281	25	339	-60
CSMH216	Pajero	RAB	7,608,060	423,883	278	25	339	-60
CSMH217	Pajero	RAB	7,608,041	423,889	278	25	339	-60
CSMH218	Pajero	RAB	7,608,022	423,896	276	25	339	-60
CSMH219	Pajero	RAB	7,608,004	423,903	275	25	339	-60
CSMH220 CSMH221	Pajero	RAB	7,607,987	423,910 423,917	273 274	25 25	339	-60
CSMH222	Pajero	RAB RAB	7,607,967 7,607,893	423,917	274	25	339 339	-60 -60
CSMH223	Pajero Pajero	RAB	7,607,893	423,943	274	25	339	-60
CSMH240	Pajero	RAB	7,607,873	423,931	274	25	339	-60
CSMH241	Pajero	RAB	7,607,930	423,931	274	25	339	-60
CSMH242	Pajero	RAB	7,607,912	423,938	274	25	339	-60
CSMH243	Pajero	RAB	7,607,857	423,958	276	25	339	-60
CSMH244	Pajero	RAB	7,607,839	423,966	276	25	339	-60
CSMH245	Pajero	RAB	7,607,820	423,972	271	25	339	-60
CSMH246	Pajero	RAB	7,607,800	423,979	272	25	339	-60
CSMH247	Pajero	RAB	7,607,781	423,986	272	25	339	-60
CSMH248	Pajero	RAB	7,607,763	423,994	273	25	339	-60
CSMH249	Pajero	RAB	7,607,745	424,001	273	25	339	-60
CSMH250	Pajero	RAB	7,607,727	424,008	273	25	339	-60
CSMH251	Pajero	RAB	7,607,707	424,015	272	25	339	-60
CSMH252	Pajero	RAB	7,607,688	424,022	275	25	339	-60
CSMH253	Pajero	RAB	7,607,669	424,029	273	25	339	-60
CSMH254	Pajero	RAB	7,607,650	424,036	273	25	339	-60
CSMH255	Pajero	RAB	7,607,968	423,811	276	60	339	-60
CSMH256	Pajero	RAB	7,607,981	423,654	282	45	348	-60
CSMH257	Pajero	RAB	7,607,926	423,457	280	55	251	-60
CSMH319	Pajero	RAB	7,607,999	422,770	288	25	343	-60
CSMH320	Pajero	RAB	7,607,982	422,773	288	25	343	-60
CSMH321	Pajero	RAB	7,607,965	422,775	286	27	343	-60
CSMH322	Pajero	RAB	7,607,947	422,778	286	27	343	-60

Hole ID	Deposit / Target Area	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)
CSMH323	Pajero	RAB	7,607,930	422,780	286	27	343	-60
CSMH324	Pajero	RAB	7,607,913	422,782	285	25	343	-60
CSMH325	Pajero	RAB	7,607,895	422,785	285	25	343	-60
CSMH326	Pajero	RAB	7,607,878	422,787	285	25	343	-60
CSMH327	Pajero	RAB	7,607,861	422,790	285	27	343	-60
CSMH328	Pajero	RAB	7,607,844	422,792	285	27	343	-60
CSMH329	Pajero	RAB	7,607,826	422,795	285	25	343	-60
CSMH330	Pajero	RAB	7,607,809	422,797	285	26	343	-60
CSMH331	Pajero	RAB	7,607,792	422,800	285	28	343	-60
CSMH332	Pajero	RAB	7,607,774	422,802	285	27	343	-60
CSMH333	Pajero	RAB	7,607,757	422,804	285	27	343	-60
CSMH334	Pajero	RAB	7,607,740	422,807	284	27	343	-60
CSMH335	Pajero	RAB	7,607,722	422,809	284	27	343	-60
CSMH336	Pajero	RAB	7,607,705	422,812	283	27	343	-60
CSMH337	Pajero	RAB	7,607,688	422,814	283	27	343	-60
CSMH338	Pajero	RAB	7,607,670	422,817	283	27	343	-60
CSMH339	Pajero	RAB	7,607,653	422,819	283	27	343	-60
CSMH340	Pajero	RAB	7,607,636	422,821	285	27	343	-60
CSMH341	Pajero	RAB	7,607,619	422,824	284	25	343	-60
CSMH342	Pajero	RAB	7,607,601	422,826	283	25	343	-60
CSMH343	Pajero	RAB	7,607,584	422,829	283	25	343	-60
CSMH344	Pajero	RAB	7,607,567	422,831	282	25	343	-60
CSMH345	Pajero	RAB	7,608,106	423,907	280	70	270	-60
CSMH73	Pajero	RAB	7,608,396	422,313	298	25	56	-60
CSMH74	Pajero	RAB	7,608,407	422,330	298	28	56	-60
CSMH75	Pajero	RAB	7,608,419	422,347	298	28	56	-60
CSMH76	Pajero	RAB	7,608,430	422,363	297	28	56	-60
CSMH77	Pajero	RAB	7,608,441	422,380	297	28	56	-60
CSMH78	Pajero	RAB	7,608,452	422,396	295	28	56	-60
CSMH79	Pajero	RAB	7,608,463	422,413	295	28	56	-60
CSMH80	Pajero	RAB	7,608,475	422,429	291	28	56	-60
CSMH81	Pajero	RAB	7,608,473	422,423	291	28	56	-60
CSMH82	Pajero	RAB	7,608,519	422,496	290	28	56	-60
CSMH83	Pajero	RAB	7,608,519	422,490	288	28	56	-60
CSMH84	Pajero	RAB	7,608,564	422,562	287	28	56	-60
CSMH85	•	RAB		422,595	287	28	56	-60
CSMH86	Pajero Pajero	RAB	7,608,587	422,595	286	28	56	-60
CSMH87	•	RAB	7,608,609	•		28	56	-60
	Pajero		7,608,631	422,661	283			
CSMH88	Pajero	RAB	7,608,654	422,694	284	28	56	-60
CSMH89	Pajero	RAB	7,608,676	422,727	284	28	56	-60
CSMH90	Pajero	RAB	7,608,699	422,761	284	28	56	-60
CSMH91	Pajero	RAB	7,608,732	422,810	281	28	56	-60
CSMH92	Pajero	RAB	7,608,766	422,860	280	28	56	-60
CSMH93	Pajero	RAB	7,608,847	422,980	283	28	56	-60
CSMH94	Pajero	RAB	7,608,780	422,090	294	25	50.2	-60
CSMH95	Pajero	RAB	7,608,793	422,106	290	25	50.2	-60
CSMH96	Pajero	RAB	7,608,806	422,122	290	25	50.2	-60
CSMH97	Pajero	RAB	7,608,819	422,138	288	25	50.2	-60
CSMH98	Pajero	RAB	7,608,832	422,154	288	25	50.2	-60
CSMH99	Pajero	RAB	7,608,845	422,170	289	28	50.2	-60
P1NE1H1	Pajero	AC	7,609,177	423,676	285	25	221.87	-60
P1NE1H2	Pajero	AC	7,609,415	423,873	278	24.2	221.87	-60
P1NE1H3	Pajero	AC	7,609,387	423,864	276	35	221.87	-60
P1NE1H4	Pajero	AC	7,609,367	423,846	277	35	221.87	-50
P1NE1H5	Pajero	AC	7,609,345	423,827	276	23	221.87	-50
P1NE1H6	Pajero	AC	7,609,331	423,815	278	20	221.87	-50
P1NE1H7	Pajero	AC	7,609,320	423,804	278	35	221.52	-50
P1NE1H8	Pajero	AC	7,609,299	423,785	280	24	221.87	-48
P1NE2H1	Pajero	AC	7,609,348	423,779	280	25	231.09	-55
P1SR2H1	Pajero	AC	7,608,645	421,604	306	30	231.12	-60
P1SR2H2	Pajero	AC	7,608,620	421,573	308	30	231.12	-60
P1SR2H3	Pajero	AC	7,608,596	421,544	310	27	231.12	-60
P1SR2H4	Pajero	UNK	7,608,576	421,519	309	11.7	231.12	-60

Hole ID	Deposit / Target Area	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)
P1SR4H1	Pajero	AC	7,608,661	421,426	311	27	245	-60
SHR010	Pajero	RC	7,609,486	422,337	282	118	220	-60
SHR011	Pajero	RC	7,609,576	422,417	279	88	40	-60
SHR012	Pajero	RC	7,609,736	422,537	282	150	330	-60
SHR013	Pajero	RC	7,609,901	422,687	285	150	330	-60
SHR014	Pajero	RC	7,610,061	422,757	286	150	220	-60
SHR015	Pajero	RC	7,610,206	422,922	279	92	220	-60
SHR016	Pajero	RC	7,610,371	423,052	274	126	220	-60
SHR017	Pajero 	RC	7,610,101	422,824	284	150	220	-60
SHR018	Pajero	RC	7,610,146	422,867	283	136	220	-60
SHR019	Pajero	RC	7,609,996	422,742	285	160	220	-60
SM1A-10	Pajero	DDH	7,610,872	420,554	282	40	145	-70
SM1A-11	Pajero	DDH	7,610,832	420,583	285	40	145	-70
SM1A-12	Pajero	DDH	7,610,792	420,612	286	40	145	-70
SM1A-13 SM1A-14	Pajero	DDH	7,610,741	420,669	287 282	40 40	145 145	-70
	Pajero	DDH	7,610,691	420,701				-70
SM1A-15 SM1A-16	Pajero Pajero	DDH DDH	7,610,665 7,610,645	420,733 420,742	284 284	40 40	145 145	-70 -70
SM1A-16 SM1A-17	Pajero	DDH	7,610,645	420,742	284	40	145	-70
SM1A-17 SM1A-9	Pajero	DDH	7,610,626	420,756	280	40	145	-70
SM2-1	Pajero	DDH	7,610,912	420,525	284	40	220	-70
SM2-10	Pajero	DDH	7,609,423	423,930	280	40	220	-70
SM2-10	Pajero	DDH	7,609,039	423,599	277	40	220	-70
SM2-13	Pajero	DDH	7,608,957	423,526	277	40	220	-70
SM2-15	Pajero	DDH	7,608,879	423,466	277	40	220	-70
SM2-17	Pajero	DDH	7,608,873	423,404	282	40	220	-70
SM2-2	Pajero	DDH	7,609,384	423,900	276	40	220	-70
SM2-3	Pajero	DDH	7,609,345	423,856	275	40	220	-70
SM2-4	Pajero	DDH	7,609,305	423,835	277	40	220	-70
SM2-5	Pajero	DDH	7,609,256	423,788	280	40	220	-70
SM2-6	Pajero	DDH	7,609,228	423,762	280	40	220	-70
SM2-7	Pajero	DDH	7,609,193	423,731	282	40	220	-70
SM2-8	Pajero	DDH	7,609,139	423,690	282	40	220	-70
SM2-9	Pajero	DDH	7,609,113	423,661	280	40	220	-70
SM3-1	Pajero	DDH	7,610,093	422,648	281	40	0	-90
SM3-11	Pajero	DDH	7,609,705	422,334	282	40	0	-90
SM3-13	Pajero	DDH	7,609,633	422,269	279	40	0	-90
SM3-15	Pajero	DDH	7,609,546	422,204	282	40	0	-90
SM3-3	Pajero	DDH	7,610,016	422,601	285	40	0	-90
SM3-5	Pajero	DDH	7,609,932	422,523	282	40	0	-90
SM3-7	Pajero	DDH	7,609,860	422,469	282	40	0	-90
SM3-9	Pajero	DDH	7,609,781	422,401	284	40	0	-90
SM6-2	Pajero	DDH	7,610,012	420,922	291	40	0	-90
SM6-3	Pajero	DDH	7,609,987	420,840	290	40	0	-90
SM6-4	Pajero	DDH	7,609,959	420,731	290	40	0	-90
SM6-5	Pajero	DDH	7,609,899	420,625	289	40	0	-90
SM6-6	Pajero	DDH	7,609,873	420,528	288	70	0	-90
SM7-1	Pajero	DDH	7,608,239	423,313	280	40	89	-70
SM7-10	Pajero	DDH	7,608,257	422,875	292	40	89	-70
SM7-11	Pajero	DDH	7,608,255	422,817	294	40	89	-70
SM7-12	Pajero	DDH	7,608,259	422,772	297	40	89	-70
SM7-2	Pajero	DDH	7,608,235	423,263	281	40	89	-70
SM7-3	Pajero	DDH	7,608,241	423,220	281	40	89	-70
SM7-4	Pajero	DDH	7,608,243	423,162	281	40	89	-70
SM7-5	Pajero	DDH	7,608,247	423,120	281	40	89	-70
SM7-6	Pajero	DDH	7,608,247	423,061	283	40	89	-70
SM7-7	Pajero	DDH	7,608,243	423,019	283	40	89	-70
SM7-8	Pajero	DDH	7,608,245	422,963	284	40	89	-70
SM7-9	Pajero	DDH	7,608,249	422,918	287	40	89	-70
SM8-1	Pajero	DDH	7,608,265	422,386	292	40	0	-90
SM8-2	Pajero	DDH	7,608,164	422,396	289	40	0	-90
SM8-3	Pajero	DDH	7,608,058	422,402	287	40	0	-90
SM8-4	Pajero	DDH	7,607,965	422,417	287	40	0	-90

Hole ID	Deposit / Target Area	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)
SM8-5	Pajero	DDH	7,607,861	422,424	284	40	0	-90
SM8-6	Pajero	DDH	7,607,765	422,431	285	40	0	-90
SM8-7	Pajero	DDH	7,607,654	422,442	284	40	0	-90
SM8-8	Pajero	DDH	7,607,555	422,451	284	40	0	-90
TFB001	Pajero	RAB	7,610,782	423,573	275	60	35	-60
TFB002	Pajero	RAB	7,610,762	423,558	275	40	35	-60
TFB003	Pajero	RAB	7,610,742	423,543	274	47	35	-60
TFB004	Pajero	RAB	7,610,721	423,528	275	32	35	-60
TFB005	Pajero	RAB	7,610,701	423,513	277	42	35	-60
TFB006	Pajero	RAB	7,610,681	423,498	278	60	35	-60
TFB007	Pajero	RAB	7,610,661	423,484	278	45	35	-60
TFB008	Pajero	RAB	7,610,641	423,469	279	51	35	-60
TFB009	Pajero	RAB	7,610,712	423,583	275	42	35	-60
TFB010	Pajero	RAB	7,610,672	423,554	278	26	35	-60
TFB011	Pajero	RAB	7,610,521	423,505	278	50	215	-60
TFB012	Pajero	RAB	7,610,541	423,520	277	50	215	-60
TFB013	Pajero	RAB	7,610,561	423,534	277	50	215	-60
TFB014	Pajero	RAB	7,610,581	423,549	277	16	215	-60
TFB015	Pajero	RAB	7,610,431	423,500	278	51	215	-60
TFB016	Pajero	RAB	7,610,451	423,515	279	50	215	-60
TFB017	Pajero	RAB	7,610,471	423,530	279	50	215	-60
TFB018	Pajero	RAB	7,610,491	423,545	278	50	215	-60
TFB019	Pajero	RAB	7,610,511	423,560	278	49	215	-60
TFB020	Pajero	RAB	7,610,742	423,543	274	65	215	-60
TFB021	Pajero	RAB	7,610,672	423,554	278	60	215	-60
TFB022	Pajero	RAB	7,610,692	423,568	276	52	215	-60
TFB023	Pajero	RAB	7,610,701	423,513	277	68	215	-60
TFB024	Pajero	RAB	7,610,742	423,543	274	75	215	-60
TFB025	Pajero	RAB	7,610,782	423,573	275	47	215	-60
YAC0896	Pajero	AC	7,611,329	425,147	264	6	0	-90
YAC0897	Pajero	AC	7,611,204	425,148	265	6	0	-90
YAC0898	Pajero	AC	7,611,150	425,517	270	3	0	-90
YAC0910	Pajero	AC	7,610,743	425,353	267	6	0	-90
YAC0939	Pajero	AC	7,609,367	423,960	274	6	0	-90
YAC0940	Pajero	AC	7,609,563	423,901	276	12	0	-90
YAC0941	Pajero	AC	7,609,757	423,901	276	15	0	-90
YAC0942	Pajero	AC	7,609,965	423,889	271	18	0	-90
YAC0943	Pajero	AC	7,610,193	423,867	277	18	0	-90
YAC0944	Pajero	AC	7,610,379	423,925	277	6	0	-90
YAC0945	Pajero	AC	7,610,562	423,921	275	3	0	-90
YAC0946	Pajero	AC	7,610,760	423,947	272	6	0	-90
YAC0947	Pajero	AC	7,610,969	423,952	271	9	0	-90
YAC0948	Pajero	AC	7,610,785	424,322	266	9	0	-90
YAC0954	Pajero	AC	7,609,571	424,368	269	21	0	-90
YAC0955	Pajero	AC	7,609,359	424,350	273	36	0	-90
YAC0956	Pajero	AC	7,609,167	424,341	267	12	0	-90
YAC0957	Pajero	AC	7,608,946	424,351	268	9	0	-90
YAC0958	Pajero	AC	7,608,754	424,353	273	6	0	-90
YAC0959	Pajero	AC	7,608,560	424,332	270	6	0	-90
YAC0960	Pajero	AC	7,608,357	424,349	276	9	0	-90
YAC0961	Pajero	AC	7,608,174	424,761	280	5	0	-90
YAC0962	Pajero	AC	7,608,357	424,683	269	6	0	-90
YAC0963	Pajero	AC	7,608,567	424,703	269	6	0	-90
YAC0964	Pajero	AC	7,608,766	424,684	272	12	0	-90
YAC0965	Pajero	AC	7,608,983	424,637	272	5	0	-90
YAC0966	Pajero	AC	7,609,183	424,699	270	15	0	-90
YAC0967	Pajero	AC	7,609,373	424,696	266	15	0	-90
YAC0972	Pajero	AC	7,610,368	424,030	270	12	0	-90
YAC0973	Pajero	AC	7,610,555	424,721	271	6	0	-90
YAC0974	Pajero	AC	7,610,333	424,721	271	24	0	-90
YAC0974 YAC0975	-	AC	7,610,331	425,143	270	51	0	-90
YAC0975 YAC0977	Pajero Pajero	AC	7,610,165	425,152	269	9	0	-90 -90
						6	0	
YAC0978	Pajero	AC	7,608,163	425,153	267	0	U	-90

Hole ID	Deposit / Target Area	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)
YAC0979	Pajero	AC	7,608,368	425,119	267	6	0	-90
YAC0980	Pajero	AC	7,608,561	425,148	264	3	0	-90
YAC0981	Pajero	AC	7,608,796	425,166	264	15	0	-90
YAC0982	Pajero	AC	7,608,971	425,148	268	15	0	-90
YAC0983	Pajero	AC	7,609,179	425,172	268	24	0	-90
YAC0984	Pajero	AC	7,609,368	425,167	266	24	0	-90
YAC0987	Pajero	AC	7,610,146	425,526	267	18	0	-90
YAC0988	Pajero	AC	7,609,964	425,554	268	15	0	-90
YAC0989	Pajero	AC	7,609,768	425,566	261	21	0	-90
YAC0991	Pajero	AC	7,609,350	425,579	267	21	0	-90
YAC0992	Pajero	AC	7,609,149	425,589	263	21	0	-90
YAC0993	Pajero	AC	7,608,969	425,539	265	18	0	-90
YAC0994	Pajero	AC	7,608,765	425,546	266	18	0	-90
YAC0995	Pajero	AC	7,608,564	425,540	266	6	0	-90
YAC0996	Pajero	AC	7,608,356	425,532	262	6	0	-90
YAC0997	Pajero	AC	7,608,162	425,539	267	7	0	-90
YAC0998	Pajero	AC	7,607,964	425,544	263	9	0	-90
YAC0999	Pajero	AC	7,607,773	425,545	272	12	0	-90
YAC1003	Pajero	AC	7,608,167	425,881	264	18	0	-90
YAC1553	Pajero	AC	7,608,167	423,001	287	6	0	-90
	•			•				
YAC1594	Pajero	AC	7,607,747	424,724	270	6	0	-90
YAC1595	Pajero	AC	7,607,988	424,748	270	9	0	-90
YAC1596	Pajero	AC	7,607,760	425,158	272	9	0	-90
YAC1597	Pajero	AC	7,607,561	425,110	271	6	0	-90
YAC1638	Pajero	AC	7,607,568	425,529	268	9	0	-90
YAC1769	Pajero	AC	7,611,162	421,933	281	15	0	-90
YAC1770	Pajero	AC	7,610,963	421,937	282	3	0	-90
YAC1771	Pajero	AC	7,610,760	422,335	281	18	0	-90
YAC1772	Pajero	AC	7,610,959	422,336	281	18	0	-90
YAC1773	Pajero	AC	7,611,160	422,336	279	21	0	-90
YAC1774	Pajero	AC	7,610,358	422,736	281	18	0	-90
YAC1775	Pajero	AC	7,610,556	422,739	284	21	0	-90
YAC1776	Pajero	AC	7,610,762	422,730	277	24	0	-90
YAC1777	Pajero	AC	7,610,960	422,732	280	36	0	-90
YAC1778	Pajero	AC	7,611,163	422,736	273	24	0	-90
YAC1786	Pajero	AC	7,611,164	423,137	272	12	0	-90
YAC1787	Pajero	AC	7,610,962	423,139	276	12	0	-90
YAC1788	Pajero	AC	7,610,761	423,133	277	15	0	-90
YAC1789	Pajero	AC	7,610,751	423,137	277	23	0	-90
YAC1790	Pajero	AC	7,610,363	423,137	276	12	0	-90
YAC1790		AC		•	282			-90
	Pajero Pajero		7,610,157	423,139		6	0	-90
YAC1792	•	AC	7,609,961	423,140	281	9		
YAC1793	Pajero	AC	7,609,763	423,536	279	12	0	-90
YAC1794	Pajero	AC	7,609,960	423,537	278	15	0	-90
YAC1795	Pajero	AC	7,610,163	423,537	279	12	0	-90
YAC1796	Pajero	AC	7,610,360	423,541	280	9	0	-90
YAC1797	Pajero	AC	7,610,562	423,538	277	9	0	-90
YAC1798	Pajero	AC	7,610,760	423,543	274	12	0	-90
YAC1799	Pajero	AC	7,610,961	423,534	272	15	0	-90
YAC1800	Pajero	AC	7,611,161	423,535	274	9	0	-90
YAC1801	Pajero	AC	7,609,161	423,138	277	9	0	-90
YAC1802	Pajero	AC	7,609,180	422,741	283	12	0	-90
YAC1803	Pajero	AC	7,609,362	422,737	277	6	0	-90
YAC1804	Pajero	AC	7,609,390	422,339	283	9	0	-90
YAC1805	Pajero	AC	7,609,562	422,340	280	6	0	-90
YRB2454	Pajero	AC	7,610,537	423,757	281	50	215	-60
YRB2455	Pajero	AC	7,610,620	423,816	279	119	215	-60
YRB2456	Pajero	AC	7,610,620	423,621	278	100	215	-60
YRB2457	Pajero	AC	7,610,650	423,650	273	100	215	-60
YRB2458	Pajero	AC	7,610,691	423,679	273	100	215	-60
YRB2459	Pajero	AC	7,610,733	423,709	274	100	215	-60
YRB2460	Pajero	AC	7,610,774	423,738	275	100	215	-60
YRB2461	Pajero	AC	7,610,405	423,605	282	14	215	-60

Hole ID	Deposit / Target Area	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)
YRB2499	Pajero	RAB	7,611,164	424,338	265	11	0	-90
YRB2500	Pajero	RAB	7,610,974	424,350	271	11	360	-90
YRB2501	Pajero	RAB	7,610,766	424,736	268	8	360	-90
YRB2502	Pajero	RAB	7,610,961	424,736	266	11	360	-90
YRB2503	Pajero	RAB	7,611,172	424,735	269	14	360	-90
YRB2504	Pajero	RAB	7,610,978	425,150	265	23	0	-90
YRB2505	Pajero	RAB	7,610,839	425,586	268	23	0	-90
YRB2506	Pajero	RAB	7,610,589	425,609	269	11	0	-90
YRB2519	Pajero	RAB	7,610,361	425,536	265	32	0	-90
YRB2520	Pajero	RAB	7,610,764	425,128	266	23	0	-90
YRB2521	Pajero	RAB	7,610,564	425,132	268	26	0	-90
YRB2522	Pajero	RAB	7,611,167	423,938	267	17	0	-90
YRB2523	Pajero	RAB	7,611,358	423,939	267	14	0	-90
YRB5064	Pajero	AC	7,609,369	423,784	279	87	179	-60
YRB5065	Pajero	AC	7,609,407	423,816	277	74	179	-60
YRB5066	Pajero	RAB	7,609,445	423,848	278	90	179	-60
YRB5067	Pajero	AC	7,609,484	423,880	278	102	179	-60
YRB5068	Pajero	AC	7,609,522	423,913	278	102	179	-60
YRB5069	Pajero	AC	7,609,560	423,945	276	102	213	-60
YRB5070	Pajero	AC	7,609,598	423,977	276	102	213	-60
YRB5071	Pajero	AC	7,609,637	424,009	275	102	213	-60
YRB5072	Pajero	AC	7,609,675	424,041	274	96	213	-60
YRB5073	Pajero	AC	7,609,713	424,073	274	75	213	-60
YRB5074	Pajero	RAB	7,609,254	423,688	284	90	179	-60
YRB5075	Pajero	RAB	7,609,216	423,655	285	86	179	-60
YRB5076	Pajero	RAB	7,609,292	423,720	282	99	179	-60
YRB5077	Pajero	RAB	7,609,330	423,752	282	82	179	-60
YRB5127	Pajero	RAB	7,607,965	423,360	281	102	20	-60
YRB5128	Pajero	RAB	7,607,918	423,377	283	102	20	-60
YRB5129	Pajero	RAB	7,607,952	423,471	280	84	20	-60
YRB5130	Pajero	RAB	7,607,986	423,565	278	99	20	-60
YRB5131	Pajero	RAB	7,607,939	423,582	280	66	20	-60
YRB5132	Pajero	RAB	7,607,892	423,599	277	93	20	-60
YRB5133	Pajero	RAB	7,607,845	423,616	277	102	20	-60
YRB5134	Pajero	RAB	7,607,798	423,633	275	81	20	-60
YRB5135	Pajero	RAB	7,607,751	423,650	279	81	20	-60
YRB5136	Pajero	RAB	7,608,020	423,659	282	100	20	-60
YRB5137	Pajero	RAB	7,607,984	423,778	279	72	20	-60
YRB5138	Pajero	RAB	7,608,008	423,770	280	87	20	-60
YRB5139	Pajero	RAB	7,607,961	423,787	277	99	20	-60
YRB5140	Pajero	RAB	7,607,914	423,787	277	87	20	-60
YRB5141	Pajero	RAB	7,607,867	423,804	277	105	20	-60
YRB5142	Pajero	RAB	7,607,820	423,838	274	93	20	-60
YRB5143	Pajero	RAB	7,607,820	423,855	280	93	20	-60
YRB5144	Pajero	RAB	7,607,773	423,873	280	81	20	-60
YRB5145	Pajero	RAB	7,607,720	423,873	278	78	20	-60
YRB5146	Pajero	RAB	7,607,679	423,309	281	81	20	-60
YRB5146 YRB5147	Pajero	RAB	7,608,106	423,309	281	84	20	-60
YRB5148	-	RAB	7,608,039	423,520	278	102	20	-60
	Pajero							
YRB5149	Pajero	RAB	7,608,057	423,539	278	93	20	-60
YRB5150	Pajero	RAB	7,608,149	423,719	277	75	20	-60
YRB5151	Pajero	RAB	7,608,102	423,736	278	81	20	-60

TIMS DOME AREA – 2018 Air Core and Reverse Circulation Drill Hole Sampling

JORC Code 2012 Edition: Table 1 - Section 1 Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 2018 (August) Air Core (AC) Drilling Prospects/targets have been sampled by 17 AC drill holes, totaling 478 m, with an average drill hole depth of 28 m. Assays have been received for all 2018 AC drill holes. AC drill holes were generally drilled on a nominal 25 m (along line) and 125 m across line infill and trend-extensional basis only, testing geological and geochemical targets. Drill hole locations for all 2018 holes are tabulated in the body of this report. 2018 (September-October) Reverse Circulation Core (RC) Drilling Prospects/targets have been sampled by 41 Reverse Circulation (RC) drill holes, totaling 5,976 m, with an average drill hole depth of 145.9 m. Assays have been received for all of the 2018 RC drill holes. RC drill holes were drilled within, below and along strike of known mineralisation, testing geological and geochemical targets. Drill hole locations for all 2018 holes are tabulated in the body of this report. AC Sampling AC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 10 or 20. Compositing AC samples in lengths between 2 to 4 m was undertaken via combining 'Spear' samples of the 1.0 m intervals to generate a 2 kg (average) sample. Areas of anomalous portable XRF Device (Niton) ('pXRF') results or zones of encouraging geological observations were sampled as single metres. All samples are pulverised at the laboratory to produce material for assay. RC Sampling RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice.
		 RC samples were drilled using a 140mm diameter face sampling hammer and sampled on intervals of 1.0m using a rig mounted cone splitter from which a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay. Compositing of unmineralised regions (guided by Niton portable XRF field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Air Core Circulation Drilling AC Drilling was undertaken with a Bostech Drillboss 200 4WD truck mounted rig. The rig has a depth capacity of approximately 150 m with an on-board compressor producing 600 cfm at 250 psi. All drill holes were completed using an 85 mm AC blade. If hard drilling conditions are encountered a 97 – 102 mm RAB hammer with a crossover sub (not face sampling) is utilised; however, this drilling technique was not required at Chicken Ranch. Drill holes were directed towards local grid east (135 holes), west (57 holes) and southwest (one hole), with an inclination angle of -60°. Reverse Circulation Drilling
		 RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. RC samples were drilled using a 140mm diameter face sampling hammer and sampled on intervals of 1.0m using a rig mounted cone splitter from which a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay. Compositing of unmineralised regions (guided by Niton portable XRF field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC Drill Samples AC sample recovery and sample quality was recorded via visual estimation of sample volume and condition of the drill spoils. AC sample recovery typically ranges from 90 to 100%, with only very occasional samples with less than 70% recovery. AC sample recovery was maximized by endeavoring to maintain a dry drilling conditions as much as practicable; the AC samples were almost exclusively dry. Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery.
		 RC Drill Samples RC sample recovery was recorded via visual estimation of sample volume. RC sample recovery typically ranges from 90 to 100%, with only very occasional samples with less than 70% recovery. RC sample recovery was maximized by endeavoring to maintain a dry drilling conditions as much as practicable; the RC samples were almost exclusively dry. All samples were split on a 1m interval using a rig-mounted cone splitter. Adjustments were made to ensure representative 2 to 3kg sample volumes were collected. Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery. RC sample recovery and sample quality was recorded via visual estimation of sample volume and

Criteria	JORC Code explanation	Commentary
		 condition of the drill spoils. RC results are generated for the purpose of exploration and potentially for Mineral Resource estimations.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 AC Drill Logging Geological logging of 100% of all AC sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. Logging includes both qualitative and quantitative components. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master Access SQL database. Selected AC sample intervals were measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. AC samples are generally analyzed in the field using a pXRF for the purposes of geochemical and lithological interpretation and the selection of sampling intervals. RC Drill Logging All RC material is logged. Logging includes both qualitative and quantitative components. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master Access SQL database. Geological logging of 100% of all RC sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. RC sample intervals were routinely measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. RC samples are generally analyzed in the field using a Portable XRF Device (Niton) for the purposes of
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative 	 Geochemical and lithological interpretation and the selection of sampling intervals. AC Samples One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 10 or 20. Compositing AC samples of between 2 to 4 m was undertaken via combining 'Spear' samples of the intervals to generate a 2 kg (average) sample. Areas of anomalous pXRF results or anomalous geological observations were sampled as single metres. All samples are pulverised at the laboratory to produce material for assay.

Criteria	JORC Code explanation	Commentary
	of the in-situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled.	 RC Samples RC samples for all drill holes were drilled using a 140mm diameter face sampling hammer and split on intervals of 1.0m using a rig mounted cone splitter from which a 3 kg (average) sample which was pulverised at the laboratory pulverised to produce material for assay. Compositing of unmineralised regions (guided by Portable XRF / Niton field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 3 kg (average) sample which was pulverised at the laboratory to produce material for assay. Field duplicate samples were collected for all RC drill holes. AC Sample Preparation
		 Sample preparation of AC samples was completed at MinAnalytical Laboratories in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the AC sample down to approximately 10 mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 µm and split into a sub–sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the sulphide style of mineralisation at Chicken Ranch, the thickness and consistency of the intersections and the sampling methodology.
		 Sample Preparation Sample preparation of RC samples was completed at MinAnalytical Laboratories in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the sample down to approximately 10mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 µm and split into a sub–sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the style of mineralisation at Chicken Ranch, the thickness and consistency of the intersections and the sampling methodology.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether 	 The sample preparation technique for both AC and/or RC samples are documented by Antipa Mineral Ltd's standard procedures documents and is in line with industry standards in sample preparation. The sample sizes are considered appropriate to represent mineralisation. Sample preparation checks for fineness were carried out by the laboratory as part of its internal procedures.
	acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	AC Analytical Techniques All samples were dried, crushed, pulverised and split to produce a sub—sample for a 10-gram sample which are digested and refluxed with nitric and hydrochloric ('aqua regia digest') acid suitable for weathered AC samples. Aqua regia can digest many different mineral types including most oxides, sulphides and carbonates but will not totally digest

Criteria	JORC Code explanation	Commentary
		refractory or silicate minerals. Analytical methods used were both ICP–OES and ICP–MS (Au, Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr). • For samples which returned Au greater than 4,000 ppb Au (upper detection limit) with the aqua regia digest, a lead collection fire assay on a 50-gram sample with Atomic Absorption Spectroscopy was undertaken to determine gold content with a detection limit of 0.005ppm.
		 Ore grade ICP—OES analysis was completed on samples returning results above upper detection limit. No geophysical tools were used to determine any element concentrations in this report. A handheld portable Niton XRF analyser (XL3t 950 GOLDD+) device is used in the field to investigate and record geochemical data for internal analysis. However, due to 'spatial'
		 accuracy/repeatability issues this data is generally not publicly reported for drill holes, other than for specific purposes/reasons. Field QC procedures involve the use of commercial certified reference material (CRM's) for assay standards and blanks. Standards are inserted every 50 samples. The grade of the inserted standard is not revealed to the laboratory.
		 Repeat QC samples was utilised during the AC drilling programme with nominally two to three duplicate AC field samples per drill hole. Inter laboratory cross-checks analysis programmes have not been conducted at this stage. In addition to Antipa supplied CRM's, MinAnalytical includes in each sample batch assayed certified reference materials, blanks and up to 10% replicates. Selected anomalous samples are re-digested and analysed to confirm results.
		RC Sample Preparation
		 Sample preparation of RC samples was completed at MinAnalytical Laboratories in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the sample down to approximately 10mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 µm and split into a sub–sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the style of mineralisation at Chicken Ranch, the thickness and consistency of the intersections and the sampling methodology. The sample preparation technique for RC samples is documented by Antipa Mineral Ltd's standard procedures documents and is in line with industry standards in sample preparation. The sample sizes are considered appropriate to represent mineralisation. Sample preparation checks for fineness were carried out by the laboratory as part of its internal procedures.
		Analytical Techniques:
		 A lead collection fire assay on a 50g sample with Atomic Absorption Spectroscopy

Criteria	JORC Code explanation	Commentary
		 undertaken to determine gold content with a detection limit of 0.005ppm. All samples were dried, crushed, pulverised and split to produce a sub–sample for a 25g sample which are digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acids ('four acid digest') suitable for silica-based samples. This digest is considered to approach a total dissolution for most minerals. Analytical methods used were ICP–OES (Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, S, Ti, V and Zn) with selective ICP–MS (Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cs, Ga, Ge, Hf, in, La, Li, Mo, Nb, Ni, Pb, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Tl, U, W, Y and Zr). Ore grade ICP–OES analysis was completed on samples returning results above upper detection limit. No geophysical tools were used to determine any element concentrations in this report. A handheld portable Niton XRF analyser (XL3t 950 GOLDD+) device is used in the field to investigate and record geochemical data for internal analysis. However, due to 'spatial' accuracy/repeatability issues this data is generally not publicly reported for drill holes, other than for specific purposes/reasons. Field QC procedures involve the use of commercial certified reference material (CRM's) for assay standards and blanks. Standards are inserted every 25 samples. The grade of the inserted standard is not revealed to the laboratory. Field duplicates/repeat QC samples was utilised during the RC drilling programme with nominally two to three duplicate RC field samples per drill hole. Inter laboratory cross-checks analysis programmes have not been conducted at this stage. In addition to Antipa supplied CRM's, MinAnalytical includes in each sample batch assayed certified reference materials, blanks and up to 10% replicates. Selected anomalous samples are re-digested and analysed to confirm results.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have been visually verified by one or more alternative company personnel and/or contract employees. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master SQL database. No adjustments or calibrations have been made to any assay data collected.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 km = kilometre; m = metre; mm = millimetre. Drill hole collar locations are surveyed using a handheld Garmin 64S GPS which has an accuracy of ± 3 m. The drilling co-ordinates are all in GDA94 MGA Zone 51 co-ordinates. Vertical AC drill holes do not require for drill rig set-up azimuth checking. Inclined AC drill holes are checked for drill rig set-up azimuth using Suunto Sighting Compass from

Criteria	JORC Code explanation	Commentary
		 two directions. Drill hole inclination is set by the driller using a clinometer on the drill mast and checked by the geologist prior the drilling commencing. AC drill hole down hole surveys No downhole surveys are undertaken for AC drill holes. RC drill hole down hole surveys RC downhole surveys were undertaken in-hole during drilling using a 'Reflex EZ Trac Camera' device at 30 metre intervals with a final survey at the end of the drill hole. Downhole surveys were checked by the supervising geologist for consistency. If required, readings were re-surveyed or smoothed in the database if unreliable azimuth readings were apparent. Survey details included drill hole dip (±0.25° accuracy) and drill hole azimuth (±0.35 accuracy°) Total Magnetic field and temperature. The Company has adopted and referenced one specific local grid across the Tim's Dome region ("Tim's Dome" Local Grid) which is defined below. Tim's Dome Local Grid 2-Point Transformation Data: Tim's Dome Local Grid 6,800m east is 403,537m east in GDA94 / MGA Zone 51; Tim's Dome Local Grid 6,475m east is 404,437m east in GDA94 / MGA Zone 51; Tim's Dome Local Grid 6,475m east is 404,437m east in GDA94 / MGA Zone 51; Tim's Dome Local Grid 127,450m north is 7,606,671m north in GDA94 / MGA Zone 51; Tim's Dome Local Grid 127,450m north is 7,606,671m north in GDA94 / MGA Zone 51; Tim's Dome Local Grid elevation is equal to GDA94 / MGA Zone 51. Tim's Dome Local Grid elevation is equal to GDA94 / MGA Zone 51. Tim's Dome Local Grid elevation is equal to GDA94 / MGA Zone 51. The topographic surface has been defaulted to 250 m RL
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 AC Drill lines are east-west "Tim's Dome" local grid oriented. "Tim's Dome" local grid drill lines are spaced approximately 125 m apart with an average drill hole spacing on each section between 20 to 25 m. Where anomalous pXRF results or encouraging geological observations were made additional holes were drilled grid north and south at a 25 m spacing. The section spacing/drill hole distribution is adequate for the intended geochemical reconnaissance nature of the AC drilling programme. AC results are generally not utilised for Mineral Resource estimations. AC drill sample compositing has been applied for the reporting of exploration results.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have 	 The drill hole distribution and orientation are suitable for the intended geochemical reconnaissance nature of the AC drilling programme. AC results are generally not utilised for Mineral Resource estimations. The distribution of RC drilling is considered suitable for continued target generation and resource

Criteria	JORC Code explanation	Commentary
	introduced a sampling bias, this should be assessed and reported if material.	extension and infill.
Sample security	The measures taken to ensure sample security.	 Chain of sample custody is managed by Antipa to ensure appropriate levels of sample security. Samples are stored on site and delivered by Antipa or their representatives to Port Hedland and subsequently by Toll Ipec Transport from Newman to the assay laboratory in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling techniques and procedures are regularly reviewed internally, as is the data. Consultants Snowden, during completion of the 2013 Calibre Mineral Resource estimate, undertook a desktop review of the Company's sampling techniques and data management and found them to be consistent with industry standards.

Tims Dome Area – 2018 Air Core and Reverse Circulation Drill Hole Sampling

Section 2 – Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Tim's Dome region drilling, and other exploration data is located within Antipa Resources Ltd Exploration License E45/4565 (granted) and Kitchener Resources Pty Ltd (a wholly owned Antipa subsidiary) Exploration License E45/2526 (granted). Antipa Minerals Ltd has a 100% interest in both E45/4565 and E45/2526. A 1% net smelter royalty payable to Yandal Investments Pty Ltd (Yandal) on the sale of product on all metals applies to tenement E45/2526 as a condition of an Agreement with Yandal in relation to the Company's Paterson Project. Tenements E45/4565 and E45/2526, including the Tim's Dome South deposit, are not subject to the Citadel Project Farm-in Agreement with Rio Tinto Exploration Pty Ltd. All tenements are contained completely within land where the Martu People have been determined to hold native title rights. To the Company's knowledge no historical or environmentally sensitive sites have been identified in the area of work. Land Access and Exploration Agreements are in place with the Martu People. The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Tim's Dome South deposit was a greenfield discovery by Duval Mining Corporation during the early 1980's. Exploration of the Tim's Dome region has involved the following companies: Duval Mining Corp. (1984 to 1985); Battle Mountain Inc. (1986); Newmont Holdings Pty Ltd (1987 to 1990); Newcrest Mining Limited (1991); MIM Exploration Pty Ltd (1991 to 1995); Mount Burgess Mining Company NL (1997);

Criteria	JORC Code explanation	Commentary
		 Normandy Exploration Limited (1999 to 2000); Mount Burgess Mining Company NL (2001 to 2002); Newcrest Mining Limited (2003); Barrick Gold Limited (2005 to 2006); and Antipa Minerals Ltd (2015 onwards).
Geology	Deposit type, geological setting and style of mineralisation.	 The geological setting is Paterson Province Proterozoic aged meta-sediment hosted hydrothermal shear, fault and strata/contact controlled precious and/or base metal mineralisation which is typically sulphide bearing. The mineralisation in the region is interpreted to be granite related. The Paterson is a low-grade metamorphic terrane but local hydrothermal alteration and/or contact metamorphic mineral assemblages and styles are indicative of a high-temperature local environment. Mineralisation styles include vein, stockwork, breccia and skarns.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A summary of all available information material to the understanding of the Tim's Dome region exploration results can be found in previous WA DMP publicly available reports. All the various technical and Tim's Dome region exploration reports are publicly accessible via the DMP's online WAMEX system. The specific WAMEX and other reports related to the exploration information the subject of this public disclosure have been referenced in previous public reports. Antipa Minerals Ltd publicly disclosed reports provide details of all exploration completed by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported aggregated intervals have been length weighted. No density or bulk density is available and so no density weighting has been applied when calculating aggregated intervals. No top-cuts to gold or copper have been applied (unless specified otherwise). A nominal 0.40 g/t gold or 0.10% copper lower cut-off grade is applied. Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals. Metal equivalence is not used in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Tim's Dome is interpreted to represent the re-emergence, due to a fold plunge reversal, of the Telfer Domal structure. Tim's Dome anticlinal axis which plunges shallowly to the southeast with fold limbs that dip between 30° to 70°. Tim's Dome is truncated to the northwest by Crofton Granite with the domal trend re-emerging to the north of this granite intrusion within the Company's tenement E45/2525.

Criteria	JORC Code explanation	Commentary
		 Stratigraphy within Tim's Dome includes rock units which host the world-class Telfer gold-copper, silver deposit, including the quartz rich Malu Formation and carbonate bearing Telfer Member, with the overlying carbonate bearing Puntapunta Formation also identified by drilling. Tim's Dome South Deposit: Gold mineralisation is best developed on the western side of a northwest striking mineralised quartz vein to stockwork corridor greater than 4km long which hosts several subparallel and cross-cutting gold trends across a zone up to approximately 200m in width which is dominated by northwest striking, moderate to steeply southwest dipping mineralised veins, however less abundant orthogonal northeast striking mineralised veins are also present. In general, the intersection angles for the variety drilling generations appear to be at a moderate angel to the overall mineralised zones. Therefore, the reported downhole intersections are estimated to approximate between 50% to 80% true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMP WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide maps and sections (with scales) and tabulations of intercepts generated by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant results are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide details of all significant exploration results generated by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMP WAMEX publicly available reports. The details of the Tim's Dome South deposit historic Induced Polarisation survey can be found in WA DMP publicly available WAMEX report A066297 (2002). The details of the Tim's Dome South deposit historic high-resolution ground magnetic survey can be found in WA DMP publicly available WAMEX report A066297 (2002). Zones of mineralisation and associated waste material have not been measured for their bulk density. Multi element assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulfur, lead, zinc and magnesium. No Geotechnical logging (e.g. Recovery, RQD and Fracture Frequency) was obtained from the WAMEX reports. Limited information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material was obtained from the WAMEX reports. No metallurgical test-work results are available for the Tim's Dome deposits.
Further work	The nature and scale of planned further work (e.g. tests for	Planned further work:

Criteria	JORC Code explanation	Commentary
	 lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Ongoing review and interpretations of the historical Tim's Dome exploration data; Reconnaissance field exploration to validate existing surface mapping, sampling and drill hole locations; and Planning and future execution of exploration activities to identify both depth and lateral extensions to potential high-grade gold mineralisation. All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMP WAMEX publicly available reports.

CHICKEN RANCH AREA – 2018 Air Core and Reverse Circulation Drill Hole Sampling

JORC Code 2012 Edition: Table 1 - Section 1 Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	NOTE: For detailed descriptions of the JORC Criteria for the various Chicken Ranch region exploration programmes completed between 1970 to 2016, some of which are referred to in this public disclosure, refer to the Company's public disclosure (i.e. ASX Website www.asx.com.au and Antipa Minerals Ltd Website http://antipaminerals.com.au/) report entitled "Antipa Secures High Grade Chicken Ranch Deposit" created on 2 August 2017. 2018 (July-August) Air Core (AC) Drilling Prospects/targets have been sampled by 195 AC drill holes, totaling 10,105 m, with an average drill hole depth of 51.8 m. Assays have been received for all 2018 AC drill holes. AC drill holes were generally drilled on a nominal 25 m (along line) and 50 m across line infill and trend-extensional basis only, testing geological and geochemical targets. Drill hole locations for all 2018 holes are tabulated in the body of this report. 2018 (August-October) Reverse Circulation Core (RC) Drilling Prospects/targets have been sampled by 20 Reverse Circulation (RC) drill holes, totaling 2,533 m, with an average drill hole depth of 126.7 m. To date assays have been received for all 2018 RC drill holes. RC drill holes were drilled within, below and along strike of known mineralisation, testing geological and geochemical targets. Drill hole locations for all 2018 holes are tabulated in the body of this report. AC Sampling AC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 10 or 20. Compositing AC samples in lengths between 2 to 4 m was undertaken via combining 'Spear' samples of the 1.0 m intervals to generate a 2 kg (average) sample. Areas of anomalous portable XRF Device (Niton) ('pXRF') results or zones of encouraging geological observations were sampled as single metres. All samples are pulverised at the laboratory to produce material for assay. RC Sampling RC Sampling was carrie
		 RC samples were drilled using a 140mm diameter face sampling hammer and sampled on intervals of 1.0m using a rig mounted cone splitter from which a 2 kg (average) sample which was pulverised at

Criteria	JORC Code explanation	Commentary
		 the laboratory to produce material for assay. Compositing of unmineralised regions (guided by Niton portable XRF field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Air Core Circulation Drilling AC Drilling was undertaken with a Bostech Drillboss 200 4WD truck mounted rig. The rig has a depth capacity of approximately 150 m with an on-board compressor producing 600 cfm at 250 psi. All drill holes were completed using an 85 mm AC blade. If hard drilling conditions are encountered a 97 – 102 mm RAB hammer with a crossover sub (not face sampling) is utilised; however, this drilling technique was not required at Chicken Ranch. Drill holes were directed towards local grid east (135 holes), west (57 holes) and southwest (one hole), with an inclination angle of -60°.
		Reverse Circulation Drilling
		 RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. RC samples were drilled using a 140mm diameter face sampling hammer and sampled on intervals of 1.0m using a rig mounted cone splitter from which a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay. Compositing of unmineralised regions (guided by Niton portable XRF field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay.
Drill sample	Method of recording and assessing core and chip sample	AC Drill Samples
recovery	 recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC sample recovery and sample quality was recorded via visual estimation of sample volume and condition of the drill spoils. AC sample recovery typically ranges from 90 to 100%, with only very occasional samples with less than 70% recovery.
		 AC sample recovery was maximized by endeavoring to maintain a dry drilling conditions as much as practicable; the AC samples were almost exclusively dry.
		 Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery.
		RC Drill Samples
		 RC sample recovery was recorded via visual estimation of sample volume. RC sample recovery typically ranges from 90 to 100%, with only very occasional samples with less than 70% recovery.
		 RC sample recovery was maximized by endeavoring to maintain a dry drilling conditions as much as practicable; the RC samples were almost exclusively dry.

Criteria	JORC Code explanation	Commentary
		 All samples were split on a 1m interval using a rig-mounted cone splitter. Adjustments were made to ensure representative 2 to 3kg sample volumes were collected. Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery. RC sample recovery and sample quality was recorded via visual estimation of sample volume and condition of the drill spoils. RC results are generated for the purpose of exploration and potentially for Mineral Resource estimations.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 AC Drill Logging Geological logging of 100% of all AC sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. Logging includes both qualitative and quantitative components. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master Access SQL database. Selected AC sample intervals were measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. AC samples are generally analyzed in the field using a pXRF for the purposes of geochemical and lithological interpretation and the selection of sampling intervals. RC Drill Logging All RC material is logged. Logging includes both qualitative and quantitative components. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master Access SQL database. Geological logging of 100% of all RC sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. RC sample intervals were routinely measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. RC samples are generally analyzed in the field using a Portable XRF Device (Niton) for the purposes of geochemical and lithological interpretation and the selection of sampling intervals.
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 10 or 20.

Criteria	JORC Code explanation	Commentary
sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Compositing AC samples of between 2 to 4 m was undertaken via combining 'Spear' samples of the intervals to generate a 2 kg (average) sample. Areas of anomalous pXRF results or anomalous geological observations were sampled as single metres. All samples are pulverised at the laboratory to produce material for assay. RC Samples RC samples for all drill holes were drilled using a 140mm diameter face sampling hammer and split on intervals of 1.0m using a rig mounted cone splitter from which a 3 kg (average) sample which was pulverised at the laboratory pulverised to produce material for assay. Compositing of unmineralised regions (guided by Portable XRF / Niton field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 3 kg (average) sample which was pulverised at the laboratory to produce material for assay. Field duplicate samples were collected for all RC drill holes. AC Sample Preparation Sample preparation of AC samples was completed at MinAnalytical Laboratories in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the AC sample down to approximately 10 mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 µm and split into a sub—sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the sulphide style of mineralisation at Chicken Ranch, the thickness and consistency of the intersections and the sampling methodology. RC Sample Preparation Sample preparation of RC samples was completed at MinAnalytical Laboratories in Perth following
		 industry best practice in sample preparation involving oven drying, coarse crushing of the sample down to approximately 10mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 μm and split into a sub–sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the style of mineralisation at Chicken Ranch, the thickness and consistency of the intersections and the sampling methodology.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision 	 The sample preparation technique for both AC and/or RC samples are documented by Antipa Mineral Ltd's standard procedures documents and is in line with industry standards in sample preparation. The sample sizes are considered appropriate to represent mineralisation. Sample preparation checks for fineness were carried out by the laboratory as part of its internal procedures. AC Analytical Techniques

Criteria	JORC Code explanation	Commentary
Criticila	have been established.	 All samples were dried, crushed, pulverised and split to produce a sub–sample for a 10-gram sample which are digested and refluxed with nitric and hydrochloric ('aqua regia digest') acid suitable for weathered AC samples. Aqua regia can digest many different mineral types including most oxides, sulphides and carbonates but will not totally digest refractory or silicate minerals. Analytical methods used were both ICP–OES and ICP–MS (Au, Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr). For samples which returned Au greater than 4,000 ppb Au (upper detection limit) with the aqua regia digest, a lead collection fire assay on a 50-gram sample with Atomic Absorption Spectroscopy was undertaken to determine gold content with a detection limit of 0.005ppm. Ore grade ICP–OES analysis was completed on samples returning results above upper detection limit. No geophysical tools were used to determine any element concentrations in this report. A handheld portable Niton XRF analyser (XL3t 950 GOLDD+) device is used in the field to investigate and record geochemical data for internal analysis. However, due to 'spatial' accuracy/repeatability issues this data is generally not publicly reported for drill holes, other than for specific purposes/reasons. Field QC procedures involve the use of commercial certified reference material (CRM's) for assay standards and blanks. Standards are inserted every 50 samples. The grade of the inserted standard is not revealed to the laboratory. Repeat QC samples was utilised during the AC drilling programme with nominally two to three duplicate AC field samples per drill hole. Inter laboratory cross-checks analysis programmes have not been conducted at this stage. In addition to Antipa supplied CRM's, MinAnalytical includes in each sample ba
		Selected anomalous samples are re-digested and analysed to confirm results. BC Sample Propagation
		 Sample Preparation Sample preparation of RC samples was completed at MinAnalytical Laboratories in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the sample down to approximately 10mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 µm and split into a sub–sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the style of mineralisation at Chicken Ranch, the thickness and consistency of the intersections and the sampling methodology. The sample preparation technique for RC samples is documented by Antipa Mineral Ltd's standard procedures documents and is in line with industry standards in sample preparation. The sample sizes are considered appropriate to represent mineralisation.

Criteria	JORC Code explanation	Commentary
		 Sample preparation checks for fineness were carried out by the laboratory as part of its internal procedures. Analytical Techniques: A lead collection fire assay on a 50g sample with Atomic Absorption Spectroscopy undertaken to determine gold content with a detection limit of 0.005ppm. All samples were dried, crushed, pulverised and split to produce a sub-sample for a 25g sample which are digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acids ('four acid digest') suitable for silica-based samples. This digest is considered to approach a total dissolution for most minerals. Analytical methods used were ICP-OES (Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, S, Ti, V and Zn) with selective ICP-MS (Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cs, Ga, Ge, Hf, in, La, Li, Mo, Nb, Ni, Pb, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Tl, U, W, Y and Zr). Ore grade ICP-OES analysis was completed on samples returning results above upper detection limit. No geophysical tools were used to determine any element concentrations in this report. A handheld portable Niton XRF analyser (XL3t 950 GOLDD+) device is used in the field to investigate and record geochemical data for internal analysis. However, due to 'spatial' accuracy/repeatability issues this data is generally not publicly reported for drill holes, other than for specific purposes/reasons. Field QC procedures involve the use of commercial certified reference material (CRM's) for assay standards and blanks. Standards are inserted every 25 samples. The grade of the inserted standard is not revealed to the laboratory. Field duplicates/repeat QC samples was utilised during the RC drilling programme with nominally two to three duplicate RC field samples per drill hole. Inter laboratory cross-checks analysis programmes have not been conducted at this stage. In addition to Antipa supplied CRM's, MinAnalytical includes in each sample batch assayed certified refere
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have been visually verified by one or more alternative company personnel and/or contract employees. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master SQL database. No adjustments or calibrations have been made to any assay data collected.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and	 km = kilometre; m = metre; mm = millimetre. Drill hole collar locations are surveyed using a handheld Garmin 64S GPS which has an accuracy of ±

Criteria	JORC Code explanation	Commentary
	other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 3 m. The drilling co-ordinates are all in GDA94 MGA Zone 51 co-ordinates. Vertical AC drill holes do not require for drill rig set-up azimuth checking. Inclined AC drill holes are checked for drill rig set-up azimuth using Suunto Sighting Compass from two directions. Drill hole inclination is set by the driller using a clinometer on the drill mast and checked by the geologist prior the drilling commencing. AC drill hole down hole surveys No downhole surveys are undertaken for AC drill holes. RC drill hole down hole surveys RC downhole surveys were undertaken in-hole during drilling using a 'Reflex EZ Trac Camera' device at 30 metre intervals with a final survey at the end of the drill hole. Downhole surveys were checked by the supervising geologist for consistency. If required, readings were re-surveyed or smoothed in the database if unreliable azimuth readings were apparent. Survey details included drill hole dip (±0.25° accuracy) and drill hole azimuth (±0.35 accuracy°) Total Magnetic field and temperature. The Company has adopted and referenced one specific local grid across the Chicken Ranch area ('Chicken Ranch Grid') which is defined below. References in the text and deposit diagrams are all in this local Grid. Table 2 and Appendix 2 are in GDA94 / MGA Zone 51. Chicken Ranch Local Grid 2-Point Transformation Data: Point # 1 = Chicken Ranch Local Grid 10,000m east is 424,724.5m east in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 15,800m north is 7,611,897.1m north in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 10,000m east is 422,694.5m east in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 8,600m north is 7,613,433.2m north in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 8,600m north is 7,613,433.2m north in GDA94 / MGA Zone 51; Chicken Ranch Local Grid 0,000m east is equal to 303° in GDA
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill lines are east-west "Chicken Ranch" local grid oriented. "Chicken Ranch" local grid drill lines are each spaced approximately 50 m apart with an average drill hole spacing on each section between 20 to 25 m. Locally (two areas) the Chicken Ranch mineralisation has been delineated in a grade-control style drill pattern consisting of 10 m x 10 m drill hole spacing format over 20 to 50 m strike lengths. The typical section spacing/drill hole distribution is considered adequate for the purpose of Mineral Resource estimation.

Criteria	JORC Code explanation	Commentary
		AC and RC drill sample compositing has been applied for the reporting of exploration results.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The location and orientation of the Chicken Ranch drilling is appropriate given the strike, dip and morphology of the mineralisation. No consistent and/or documented material sampling bias resulting from a structural orientation has been identified at Chicken Ranch at this point; however, both folding, multiple vein directions and faulting have been recorded via diamond drilling and surface mapping.
Sample security	The measures taken to ensure sample security.	 Chain of sample custody is managed by Antipa to ensure appropriate levels of sample security. Samples are stored on site and delivered by Antipa or their representatives to Port Hedland and subsequently by Toll Ipec Transport from Newman to the assay laboratory in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling techniques and procedures are regularly reviewed internally, as is the data. Consultants Snowden, during completion of the 2013 Calibre Mineral Resource estimate, undertook a desktop review of the Company's sampling techniques and data management and found them to be consistent with industry standards.

CHICKEN RANCH AREA – 2018 Air Core and Reverse Circulation Drill Hole Sampling

Section 2 – Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Tenement E45/4867 was applied for by Antipa Resources Pty Ltd on the 19th of January 2017. Multiple parties 'simultaneously' lodged applications over the area, and the decision went to a ballot before the Warden's Court in July 2017. Tenement E45/4867 was awarded in full to Antipa and was subsequently granted on the 3rd of January 2018. Antipa Minerals Ltd has a 100% interest in E45/4867 and no existing royalties or prior agreements apply. Tenement E45/4867, including the Chicken Ranch and Turkey Farm deposits, is not subject to the Citadel Project Farm-in Agreement with Rio Tinto Exploration Pty Ltd. All tenements are contained completely within land where the Martu People have been determined to hold native title rights. To the Company's knowledge no historical or environmentally sensitive sites have been identified in the area of work. Land Access and Exploration Agreements are in place with the Martu People. Antipa maintains a positive relationship with the Martu People, who are Native Title parties in the area. The tenement is in good standing and no known impediments exist.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The exploration of the Chicken Ranch area was conducted by the following major resources companies: Newmont Pty Ltd (early 1970s to 1986); Carr Boyd Minerals Limited (1973 to 1975); Geopeko Limited (JV with Carr Boyd) (1975 to 1978); Marathon Petroleum Australia Limited (1979); Western Mining Corporation Limited (WMC) (1980); Duval Mining (Australia) Limited (Carr Boyd JV with Picon Exploration Pty Ltd) (1984 to 1986); Mount Burgess Gold Mining Company N.L. (1989 to 2001); Carpentaria (MIM JV with Mount Burgess) (1990 to 1996); Normandy (JV with Mount Burgess) (1998 to 2000); Newcrest Mining Limited (2009 to 2015); Quantum Resources Limited (2012 to 2016); and Antipa Minerals Limited (2016 to current).
Geology	Deposit type, geological setting and style of mineralisation.	Chicken Ranch Tenement Area: The geology of the is dominated by a northwest trending sequence of moderate to steeply east dipping meta-sediments, including siltstone, carbonate siltstone, dolomite, and subordinate fine-grained sandstone of the Puntapunta Formation. This sequence occurs on the northeast flank of the Camp Dome complex, a regional scale doubly plunging anticline. Regional mapping undertaken by previous explorers indicates that the Chicken Ranch prospect may be related to a parasitic fold on the flank of the Camp Dome, or a separate fold structure altogether. High-grade gold with minor copper mineralisation as gossanous zones within and related to northwest trending, steeply dipping quartz veins hosted by deeply oxidized meta-sediments, including goethite pseudomorphs after massive pyrite alteration (some cubic ex-pyrite oxide pseudomorphs up to 2cm in size, similar in size to those collected in the early 1970's associated with the then outcropping Telfer gold mineralisation). The entire zone is deeply oxidized. Main zone consists of two or more northwest trending zones of mineralisation within a corridor up to 70m in width. The southwest lens of mineralisation is more persistent and has a strike length of approximately 1,300m. Several additional northwestern trending mineralisation zones to the east and west of the main zone. The Turkey Farm prospect occurs 800m west-northwest of the Chicken Ranch deposit, and gold with minor copper mineralisation within northwest trending, steeply dipping quartz ironstone veins and possible shallow (25° to 30°) east dipping zones hosted by deeply oxidized meta-sediments. The area is prospective for high-grade Telfer 'Reef Style' gold mineralisation and vein and/or stockwork style mineralisation.

Criteria	JORC Code explanation	Commentary
		 North-south striking fault zones (possible Telfer "Graben Fault" generation), appear to offset stratigraphy and mineralisation dominantly with an apparent sinistral sense which may represent simple normal displacement with east-block up / west-block down of northeasterly dipping stratigraphy.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A summary of all available information material to the understanding of the Chicken Ranch region exploration results can be found in previous Western Australia (WA) DMIRS publicly available reports. All the various technical and Chicken Ranch region exploration reports are publicly accessible via the WA DMIRS' online WAMEX system. The specific WA DMIRS WAMEX and other reports related to the exploration information the subject of this public disclosure have been referenced in previous public reports. Antipa Minerals Ltd publicly disclosed reports provide details of all exploration completed by the Company since 2017; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported aggregated intervals have been length weighted. No density or bulk density is available and so no density weighting has been applied when calculating aggregated intervals. No top-cuts to gold or copper have been applied (unless specified otherwise). A nominal 0.40 g/t gold or 0.10% copper lower cut-off grade is applied. Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals. Metal equivalence is not used in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Given the variety of drill hole types and distribution, the intersection angles for the various historic drilling generations are likely to be quite variable. The reported downhole intersections are estimated to commonly be in the range of 30% to 70% ± 10% of the true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide maps and sections (with scales) and tabulations of intercepts generated by the Company since 2017; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All significant results are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide details of all significant exploration results generated by the Company since 2017; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Zones of mineralisation and associated waste material have not been measured for their bulk density. Multi element assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulfur, lead, zinc and magnesium. Downhole 'logging' of a selection of Chicken Ranch 2018 RC drill holes using an OBI40 Optical Televiewer generated an oriented 360° image of the drill hole walls via a CCD camera recorded digital image. The OBI40 system utilised also included a North Seeking Gyro-scope to measure drill hole location/deviation, and the downhole survey also measured rock density, magnetic susceptibility, natural gamma and included a borehole caliper device for measuring drill hole diameter. The combined dataset collected via the OBI40 Optical Televiewer downhole survey data has multiple geological and geotechnical uses, including but not limited to the detection and determination of in-situ lithological, structural and mineralisation feature orientations (i.e. dip and strike), determination and orientation of fracture frequency, general ground conditions/stability, oxidation conditions, ground-water table and clarity, etc. To date the following Chicken Ranch deposit downhole 'logging' surveys have been completed:
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planned further work: Ongoing review and interpretations of the 2018 and historical Chicken Ranch and Turkey Farm exploration data; Planning and potential future execution of exploration activities to identify both depth and lateral extensions to potential high-grade gold mineralisation; Full geological interpretation, 3D modelling and subsequent Mineral Resource estimation. All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.

MINYARI DOME AREA – 2018 Reverse Circulation Drilling Programme

JORC Code 2012 Edition: Table 1 - Section 1 Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 2018 Reverse Circulation (RC) Drilling Minyari Dome Area Prospects/Targets: Air Core and geophysical targets have been evaluated by the 2018 RC drilling programme. A total of fifty-one (51) 2018 RC drill holes were completed at the Minyari Dome, totaling 8,077m, with an average maximum drill hole depth of 162m. The eighteen (18) 2018 RC drill holes which are the subject of this public disclosure are 18MYC0167 to 18MYC0184 inclusive, totaling 2,778m, with an average maximum drill hole depth of 154m. Assay results for 2018 RC drill hole 18MYC0146, hole depth 153m, were previously publicly reported on the 1 August 2018. Assay results for twenty-six (26) 2018 RC drill holes being 18MYC0140 to 18MYC0145 and 18MYC0147 to 18MYC0166, totaling 4,541m, with an average maximum drill hole depth of 175m, were previously publicly reported on the 2 October 2018. Assay results for five (5) 2018 RC drill holes (i.e. 18MYC0185 to 18MYC0189), totaling 605m with an average maximum drill hole depth of 121m, are provided by this public report. Drill hole locations for these 2018 holes are tabulated in the body of this report. RC Sampling: RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. RC Samples were drilled using a 140mm diameter face sampling hammer and sampled on intervals of 1.0m using a rig mounted cone splitter from which a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay. Compositing of unmineralised regions (guided by Niton portable XRF field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 2 kg (average) sample which was pulverised at the laboratory to produce material for assay.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Reverse Circulation Drilling All drill holes were completed using 140mm RC face sampling hammer drill bit from surface to the end of hole. Drill holes were predominantly angled towards local grid east (058° Magnetic), with some drill holes directed to local grid west, all drill holes at an inclination angle of between -55° to -65°.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and 	 RC Drill Samples RC sample recovery was recorded via visual estimation of sample volume. RC sample recovery typically ranges from 90 to 100%, with only very occasional samples with less than 70% recovery. RC sample recovery was maximized by endeavoring to maintain a dry drilling conditions as much as

Criteria	JORC Code explanation	Commentary
	grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Practicable; the RC samples were almost exclusively dry. All samples were split on a 1m interval using a rig-mounted cone splitter. Adjustments were made to ensure representative 2 to 3kg sample volumes were collected. Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery. RC sample recovery and sample quality was recorded via visual estimation of sample volume and condition of the drill spoils. RC results are generated for the purpose of exploration and potentially for Mineral Resource estimations.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC Drill Logging All RC material is logged. Logging includes both qualitative and quantitative components. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master Access SQL database. Geological logging of 100% of all RC sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. RC sample intervals were routinely measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. RC samples are generally analyzed in the field using a Portable XRF Device (Niton) for the purposes of geochemical and lithological interpretation and the selection of sampling intervals.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC Samples RC samples for all drill holes were drilled using a 140mm diameter face sampling hammer and split on intervals of 1.0m using a rig mounted cone splitter from which a 3 kg (average) sample which was pulverised at the laboratory pulverised to produce material for assay. Compositing of unmineralised regions (guided by Portable XRF / Niton field analysis) of between 2 to 4m was undertaken via combining 'Spear' samples of the unmineralised sample intervals to generate a 3 kg (average) sample which was pulverised at the laboratory to produce material for assay. Field duplicate samples were collected for all RC drill holes. RC Sample Preparation Sample preparation of RC samples was completed at MinAnalytical Laboratories in Perth following industry best practice in sample preparation involving oven drying, coarse crushing of the sample down to approximately 10mm, followed by pulverisation of the entire sample (total prep) using Essa LM5 grinding mills to a grind size of 85% passing 75 µm and split into a sub–sample/s for analysis. The sample sizes are considered to be appropriate to correctly represent the sulphide style of mineralisation at Minyari, the thickness and consistency of the intersections and the sampling

Criteria	JORC Code explanation	Commentary
		methodology.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The sample preparation technique for RC samples is documented by Antipa Mineral Ltd's standard procedures documents and is in line with industry standards in sample preparation. The sample sizes are considered appropriate to represent mineralisation. Sample preparation checks for fineness were carried out by the laboratory as part of its internal procedures. Analytical Techniques: A lead collection fire assay on a 50g sample with Atomic Absorption Spectroscopy undertaken to determine gold content with a detection limit of 0.005ppm. All samples were dried, crushed, pulverised and split to produce a sub–sample for a 25g sample which are digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acids ('four acid digest') suitable for silica based samples. This digest is considered to approach a total dissolution for most minerals. Analytical methods used were ICP–OES (Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, S, Ti, V and Zn) with selective ICP–MS (Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cs, Ga, Ge, Hf, in, La, Li, Mo, Nb, Ni, Pb, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, TI, U, W, Y and Zr). Ore grade ICP–OES analysis was completed on samples returning results above upper detection limit. No geophysical tools were used to determine any element concentrations in this report. A handheld portable Niton XRF analyser (XL3t 950 GOLDD+) device is used in the field to investigate and record geochemical data for internal analysis. However, due to 'spatial' accuracy/repeatability issues this data is generally not publicly reported for drill holes, other than for specific purposes/reasons. Field QC procedures involve the use of commercial certified reference material (CRM's) for assay standards and blanks. Standards are inserted every 25 samples. The grade of the inserted standard is not revealed to the laboratory. Field duplicates/repeat QC samples was utilised during the RC drilling programme with nominally two to three
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Significant intersections of the drilling have been visually verified by highly experienced Antipa Project geologists. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to

Criteria	JORC Code explanation	Commentary
	Discuss any adjustment to assay data.	Antipa's master SQL database.
		No adjustments or calibrations have been made to any assay data collected.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 km = kilometre; m = metre; mm = millimetre. Drill hole collar locations are surveyed using a handheld Garmin 64S GPS which has an accuracy of ± 3m. The drilling co-ordinates are all in GDA94 MGA Zone 51 co-ordinates. The Company has adopted and referenced one specific local grid across the Minyari Dome region ('Minyari' Local Grid) which is defined below. References in the text and the Minyari deposit diagrams are all in this specific Minyari Local Grid. Minyari Local Grid 2-Point Transformation Data: Minyari Local Grid 47,400m east is 421,462.154m east in GDA94 / MGA Zone 51; Minyari Local Grid 47,400m east is 414,078.609m east in GDA94 / MGA Zone 51; Minyari Local Grid 113,000m north is 7,644,356.108m north in GDA94 / MGA Zone 51; Minyari Local Grid North (360°) is equal to 330° in GDA94 / MGA Zone 51; Minyari Local Grid elevation is equal to GDA94 / MGA Zone 51. The topographic surface has been defaulted to 257m RL. Rig orientation was checked using Suunto Sighting Compass from two directions. Drill hole inclination was set by the driller using a clinometer on the drill mast and checked by the geologist prior the drilling commencing. The topographic surface has been compiled using the drill hole collar coordinates. RC downhole surveys were undertaken in-hole during drilling using a 'Reflex EZ Trac Camera' device at 30 metre intervals with a final survey at the end of the drill hole. Downhole surveys were checked by the supervising geologist for consistency. If required, readings were re-surveyed or smoothed in the database if unreliable azimuth readings were apparent. Survey details included drill hole dip (±0.25° accuracy) and drill hole azimuth (±0.35 accuracy°) Total Magnetic field and temperature.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill section spacing, at this stage, is insufficient to establish the degree of geological and grade continuity necessary to support future Mineral Resource estimations. RC drill sample compositing has been applied for the reporting of exploration results.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have 	 The drill section spacing and sampling, at this stage, is insufficient to establish the presence of any possible sampling bias. Based on the limited data currently available, the relationship between drilling orientation and key mineralised structures is uncertain.

Criteria	JORC Code explanation	Commentary
	introduced a sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	 Chain of sample custody is managed by Antipa to ensure appropriate levels of sample security. Samples are stored on site and delivered by Antipa or their representatives to Newman and subsequently by Centurion Transport from Newman to the assay laboratory in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling techniques and procedures are regularly reviewed internally, as is the data. Consultants Snowden, during completion of the 2013 Calibre Mineral Resource estimate, undertook a desktop review of the Company's sampling techniques and data management and found them to be consistent with industry standards.

MINYARI DOME AREA – 2018 Reverse Circulation Drilling Programme

Section 2 – Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Minyari Dome drilling and other exploration data is located wholly within Exploration Licenses E45/3919 and E45/3917 (granted). Antipa Minerals Ltd has a 100% interest in E45/3919 and E45/3917. A 1% net smelter royalty payable to Paladin Energy on the sale of product on all metals applies to these tenements as a condition of a Split Commodity Agreement with Paladin Energy in relation to the Company's North Telfer Project. The North Telfer Project, including the Minyari deposit, is not subject to the Citadel Project Farm-in Agreement with Rio Tinto Exploration Pty Ltd. All tenements are contained completely within land where the Martu People have been determined to hold native title rights. To the Company's knowledge no historical or environmentally sensitive sites have been identified in the area of work. Land Access and Exploration Agreements are in place with the Martu People. Antipa maintains a positive relationship with the Martu People, who are Native Title parties in the area. The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Minyari and WACA deposits were greenfield discoveries by the Western Mining Corporation Ltd during the early 1980's. Exploration of the Minyari Dome region has involved the following companies: Western Mining Corporation Ltd (1980 to 1983); Newmont Holdings Pty Ltd (1984 to 1990); MIM Exploration Pty Ltd (1990 to 1991); Newcrest Mining Limited (1991 to 2015); and

Criteria	JORC Code explanation	Commentary
		Antipa Minerals Ltd (2016 onwards).
Geology	Deposit type, geological setting and style of mineralisation.	 The geological setting is Paterson Province Proterozoic aged meta-sediment hosted hydrothermal shear, fault and strata/contact controlled precious and/or base metal mineralisation which is typically sulphide bearing. The mineralisation in the region is interpreted to be granite related. The Paterson is a low grade metamorphic terrane but local hydrothermal alteration and/or contact metamorphic mineral assemblages and styles are indicative of a high-temperature local environment. Mineralisation styles include vein, stockwork, breccia and skarns.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A summary of all available information material to the understanding of the Minyari Dome region exploration results can be found in previous WA DMIRS publicly available reports. All the various technical Minyari Dome region exploration reports are publicly accessible via the DMIRS' online WAMEX system. The specific WAMEX and other reports related to the exploration information the subject of this public disclosure have been referenced in previous public reports. Antipa Minerals Ltd publicly disclosed reports provide details of all exploration completed by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported aggregated intervals have been length weighted. No density or bulk density is available and so no density weighting has been applied when calculating aggregated intervals. No top-cuts to gold or copper have been applied (unless specified otherwise). A nominal 0.40 g/t gold or 0.10% copper lower cut-off grade is applied during data aggregation. Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals. Metal equivalence is not used in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The drill section spacing and sampling, at this stage, is insufficient to establish the geometrical relationships between the drill holes and the mineralised structures. Therefore, at this stage the reported intersection lengths are down hole in nature and the true width, which will be dependent on the local mineralisation geometry/setting, is not known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a 	 All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide maps and sections (with scales) and

Criteria	JORC Code explanation	Commentary
	plan view of drill hole collar locations and appropriate sectional views.	tabulations of intercepts generated by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au .
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant results are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide details of all significant exploration results generated by the Company since 2016; these reports are all available to view on www.antipaminerals.com.au and www.asx.com.au.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. The details of the Minyari Dome region historic Induced Polarisation survey, including IP Chargeability and resistivity anomalies, can be found in WA DMIRS publicly available WAMEX reports A81227 (2008), A86106 (2009) and A89687 (2010). The details of the Company's reprocessing, review and modelling of the Minyari Dome region historic Induced Polarisation survey, including IP Chargeability and resistivity anomalies, can be found in the Company's ASX report titled "Minyari Reprocessed IP Survey Results" created on 5 July 2016. Zones of mineralisation and associated waste material have not been measured for their bulk density; however, Specific Gravity ('Density') measurements will be taken from the 2016 diamond drill core. Multi element assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulfur, lead, zinc and magnesium. Geotechnical logging was carried out on three Minyari deposit diamond drill holes for Recovery, RQD and Fracture Frequency. No Geotechnical logging (e.g. Recovery, RQD and Fracture Frequency) was obtained from the WAMEX reports. Downhole 'logging' of a selection of Minyari Dome RC drill holes drilled since 2016 using an OBI40 Optical Televiewer generated an oriented 360° image of the drill hole walls via a CCD camera recorded digital image. The OBI40 system utilised also included a North Seeking Gyro-scope to measure drill hole location/deviation, and the downhole survey also measured rock density, magnetic susceptibility, natural gamma and included a borehole caliper device for measuring drill hole diameter. The combined dataset collected via the OBI40 Optical Televiewer downhole survey data has multiple geological and geotechnical uses, including but not limited to the detection and determination of in-situ litholog

Criteria	JORC Code explanation	Commentary
		 A programme of OBI40 Optical Televiewer downhole 'logging' for a selection of 2017 Phase 1 RC drill holes (i.e. Total 16 holes for 3,279m = 13 holes for 2,771m at the WACA deposit, 2 holes for 428m at the Minyari deposit and 1 hole for 80m at the Jude's prospect) was completed during 2017. A programme of OBI40 Optical Televiewer downhole 'logging' for a selection of 2018 RC drill holes (Total of 8 holes for 638m = 6 holes for 448m at the Minyari South area and 2 holes for 190m at the Judes area) was completed between August and October 2018. Information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material derived mainly from diamond drilling is stored in the Company's technical SQL database. No information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material was obtained from the WAMEX reports. Preliminary metallurgical test-work results are available for both the Minyari and WACA deposits. Details of this 2017 metallurgical test-work programme can be found on the ASX or Antipa websites – Public release dated 13 June 2017 and titled "Minyari Dome Positive Metallurgical Test-work Results". In summary both oxide and primary gold mineralisation (with accessory copper and cobalt) responded very satisfactorily to conventional gravity and cyanidation processes, with flotation to recovery copper and cobalt by-products the subject of ongoing evaluation. In addition, the following information in relation to metallurgy was obtained from WA DMIRS WAMEX reports: Newmont Holdings Pty Ltd collected two bulk (8 tonnes each) metallurgical samples of oxide mineralisation in 1987 (i.e. WAMEX 1987 report A24464) from a 220m long costean across the Minyari deposit. The bulk samples were 8 tonnes grading 1.5 g/t gold and 8 tonnes grading 3.57 g/t gold from below shallow cover in the costean. However, it would appear the Newmont

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planned further work: Ongoing review and interpretations of the 2018 and previous Minyari Dome exploration data; Planning and potential future execution of exploration activities to identify both depth and lateral extensions to potential high-grade gold and/or copper mineralisation; Full geological interpretation, 3D modelling and subsequent Mineral Resource estimation if warranted. All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.

TRIANGLE and PAJERO AREAS – Historical Drilling

JORC Code 2012 Edition: Table 1 - Section 1 Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Refer to the Addendums to JORC Table 1a for individual detailed descriptions of the JORC Criteria for the various Triangle area granted exploration licence (E45/4886) and Pajero area granted exploration licence (E45/4518) exploration programmes completed between 1977 to 2000 which are the subject of this public disclosure. Exploration and Source Data Overview: Drill based exploration of the Triangle and Pajero areas, and related information which is the subject of this Public Disclosure, dates back to 1977. Drill hole and all other exploration data generated prior to 1984 pre-dates the commencement of compulsory annual digital reporting of exploration datasets to the Western Australian DMIRS. Antipa has methodically manually captured (from paper copies) all relevant exploration pre-1984 data for these areas into its proprietary digital exploration databases and GIS systems. The most recent drilling on record is from 2000. Therefore, all exploration was reported prior to the mandatory implementation of the JORC Code 2012 Edition (i.e. the 1st December 2013) and related public reporting requirements. Historical exploration was conducted by the following resource companies: Newmont Pty Ltd (early 1970's to 1986); Carr Boyd Minerals Limited (1973 to 1975); Geopeko Limited (IV with Carr Boyd) (1975 to 1978); Marathon Petroleum Australia Limited (WMC) (1980); Duval Mining (Australia) Limited (Carr Boyd JV with Picon Exploration Pty Ltd) (1984 to 1986); Duval Mining (Australia) Limited (Carr Boyd JV with Picon Exploration Pty Ltd) (1984 to 1986); Normandy (IV with Mount Burgess) (1998 to 2001); Carpentaria (MIM JV with Mount Burgess) (1998 to 2000); Newcrest Mining Limited (2009 to 2015); and Quantum Resources Limi
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and 	Refer to the Addendums to JORC Table 1.

Criteria	JORC Code explanation	Commentary
	if so, by what method, etc).	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Refer to the Addendums to JORC Table 1.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Refer to the Addendums to JORC Table 1.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Refer to the Addendums to JORC Table 1.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Refer to the Addendums to JORC Table 1.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	Refer to the Addendums to JORC Table 1.

Criteria	JORC Code explanation	Commentary
Location of data points	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 km = kilometre; m = metre; mm = millimetre. For drill hole collar location information refer to Addendums to JORC Table 1. The drilling coordinates are all in GDA94 MGA Zone 51 coordinates.
Data spacing and distribution	 Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Refer to the Addendums to JORC Table 1.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The location and orientation of the Triangle and Pajero drilling is appropriate given the strike, dip and morphology of the mineralisation and the regional structural fabric. No consistent and/or documented material sampling bias resulting from a structural orientation has been identified at this point; however, both folding and multiple vein directions have been recorded via diamond drilling and surface mapping.
Sample security	The measures taken to ensure sample security.	Refer to the Addendums to JORC Table 1.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Refer to the Addendums to JORC Table 1.

TRIANGLE AND PAJERO AREAS – Historical Drilling

Section 2 – Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Tenement E45/4886 (Triangle) was applied for by Antipa Resources Pty Ltd on the 23rd of February 2017. The Tenement was granted the 14th of March 2018. No existing royalties or prior agreements apply. Antipa maintains a positive relationship with the Martu People, who are Native Title parties in the area. The tenement is in good standing and no known impediments exist. Tenement E45/4518 (Pajero) was applied for by Antipa Resources Pty Ltd on the 6th of February 2015 and Granted on the 23rd of May 2016. The tenement is in good standing and no known impediments exist.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The exploration of the Triangle and Pajero areas was conducted by the following major resources companies: Newmont Pty Ltd (early 1970s to 1986);

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 Carr Boyd Minerals Limited (1973 to 1975); Geopeko Limited (JV with Carr Boyd) (1975 to 1978); Marathon Petroleum Australia Limited (1979); Western Mining Corporation Limited (WMC) (1980); Duval Mining (Australia) Limited (Carr Boyd JV with Picon Exploration Pty Ltd) (1984 to 1986); Mount Burgess Gold Mining Company N.L. (1989 to 2001); Carpentaria (MIM JV with Mount Burgess) (1990 to 1996); Normandy (JV with Mount Burgess) (1998 to 2000); Newcrest Mining Limited (2009 to 2015); and Quantum Resources Limited (2012 to 2017). Triangle Tenement Area: The geology of the Triangle area is dominated by the northwest trending Triangle Dome Structure, a doubly-plunging anticline which folds the low-grade metasedimentary sequences of the Malu and Wilki formations. Lithology at the core of the dome is correlative with the stratigraphy which hosts the Telfer Deposit. The geological package is composed mainly of interbedded siltstone, shale, and fine-to-medium grained sandstone. The area is prospective for high-grade Telfer 'Reef Style' gold mineralisation and vein and/or stockwork style mineralisation. Pajero Tenement Area:
		 Hosts gold with copper mineralisation at Big Banana, Pajero, Wobbley's Gossan and 282 Reef prospects, etc. The Pajero exploration licence is centred on the Camp Anticline with the Telfer Member (upper Malu Formation) lithology (i.e. the preferred host rock of high-grade 'Reef Style' gold and copper mineralisation at the Telfer deposit) occupying approximately 40% of the licence area and the remainder being Malu Formation and Puntapunta Formation lithologies. The area is prospective for high-grade Telfer 'Reef Style' gold mineralisation and vein and/or stockwork style mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent 	 All drill hole results have been reported previously in open file WAMEX reports and can be accessed using the DMIRS's online system. The specific reports related to the exploration information relevant to this public disclosure are referenced in Table 2, JORC Table 1, and associated Addendums.

Criteria	JORC Code explanation	Commentary
	Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported aggregated intervals have been length weighted. No density or bulk density is available and so no density weighting has been applied when calculating aggregated intervals. No top-cuts have been applied unless otherwise stated. A nominal 0.40 g/t gold or 0.1% copper lower cut-off grade is applied. Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals. Metal equivalence is not used in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	• Given the variety of drill hole types and distribution, the intersection angles for the various historic drilling generations are likely to be quite variable. The reported downhole intersections are estimated to commonly be in the range of 30% to 70% ± 10% of the true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All significant results are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Zones of mineralisation and associated waste material have not been measured for their bulk density. Multi element assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulfur, lead, zinc and magnesium. No Geotechnical logging (e.g. Recovery, RQD and Fracture Frequency) was obtained from the WAMEX reports. No information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material was obtained from the WAMEX reports. No metallurgical test-work results are available.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future 	 At this stage, the mineralisation identified by RAB, RC and limited diamond drilling requires further work/drilling to test for continuity along strike and vertical extensions to mineralisation beyond the limits of existing historic drilling. At this stage, the mineralisation identified by RAB, RC and limited diamond drilling across Pajero granted exploration licence (E45/4518) and Triangle granted exploration licence E45/886) requires further

Criteria	JORC Code explanation	Commentary
	drilling areas, provided this information is not commercially sensitive.	 work/drilling to test for continuity along strike and vertical extensions to mineralisation beyond the limits of existing historic drilling. All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.

ADDENDUM TO JORC TABLE 1a – DRILL HOLE DATA: Triangle Area Granted Exploration Licence (E45/4886):

Individual detailed descriptions of the JORC Criteria for the various Triangle area granted exploration licence (E45/4886) exploration programmes completed between 1984 to 1997 which are the subject of this public disclosure:

TR1 – TR77 (Duval – 1984) = ATR-15374 & ATR-57759 WA DMIRS WAMEX Publicly Available Reports

Locations were initially reported as locations on traverses with a distance from origin. These points were originally calculated from a Geospatially referenced map, cross referenced against scaled cross sections. (ATR-15374 - 1984). Drill holes were subsequently reported in a Final Surrender Report (ATR-57759 - 1998) where digital location data was provided in AMG84. This data was converted to MGA94 and compared with the original (1984) digitised data. The points were comparable, and the digital data was assumed to be more accurate.

All drilling was listed as Percussion.

Analytical data was reported in hard copy format (ATR-15374 – 1984). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. No record of analytical method was recorded. Elements analysed include; Au, Ag, Cu, Pb, Zn, As, Mn. All elements were reported in ppm (parts per million).

CTR78-CTR324 (Duval 1986) = ATR-19291 & ATR-57759 WA DMIRS WAMEX Publicly Available Reports

Locations were initially reported as locations on traverses with a distance from origin. These points were originally calculated from a Geospatially referenced map, cross referenced against scaled cross sections. (ATR-19291 - 1986). Drill holes were subsequently reported in a Final Surrender Report (ATR-57759 - 1998) where digital location data was provided in AMG84. This data was converted to MGA94 and compared with the original (1984) digitised data. The points were comparable, and the digital data was assumed to be more accurate.

All drilling was listed as Percussion.

Analytical data was reported in hard copy format (ATR-19291 – 1984). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. No record of analytical method was recorded. Elements analysed include; Au, Ag, Cu, Pb, Zn, As, Mn. All elements were reported in ppm (parts per million).

TN-TH94-TH-TN120 (Freeport 1988) = ATR-25990 WA DMIRS WAMEX Publicly Available Report

Prefix 'TN-' was added to the series of holes reported in ATR-25990 due to conflict with existing holes in the master database.

All drilling was listed as RAB.

Local grid co-ordinates were captured from hard copy geological logs. No grid transformation details were provided. Location data was captured from geospatially referencing location maps provided in

ATR-25990. This data has since been verified as nominally accurate when comparing to later generation maps and reports. Locations are considered nominal.

Analytical data was reported in hard copy format (ATR-25990 – 1988). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. No record of analytical method was recorded. Elements analysed include; Au, Cu, Pb, Zn and As. All elements were reported in ppm (parts per million).

NTR-88-1, NTR-88-2 (Newmont 1988) =ATR-28358 WA DMIRS WAMEX Publicly Available Report

Two diamond drill holes were reported by Newmont in 1988 (ATR-28358).

Local grid co-ordinates were captured from hard copy geological logs. No grid transformation details were provided. Location data was captured from geospatially referencing location maps provided in ATR-28358. This data has since been verified as nominally accurate when comparing to later generation maps and reports. Locations are considered nominal.

Analytical data was reported in hard copy format (ATR-28358 – 1988). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. No record of analytical method was recorded. Elements analysed include; Au, Cu, Pb, Zn, Co, Ag and As. All elements were reported in ppm (parts per million).

NTR1703-1707, NTR1801-1813, NTR1901-1903 (Newmont 1990) = ATR-31361 WA DMIRS WAMEX Publicly Available Report

A series of RAB holes were reported (ATR-31361). Originally, hole identifiers had the format NTR18-1. Later reports had different formats (NTR1801). Naming convention was matched to this format for consistency with other data in the database.

Location data was captured from geospatially referencing location maps provided in ATR-31361. This data has since been verified as nominally accurate when comparing to later generation maps and reports. Locations are considered nominal.

Analytical data was reported in hard copy format (ATR-31361 – 1990). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. No record of analytical method was recorded. Elements analysed include; Au, Cu, Pb, Zn, Co, Ag and As. All elements were reported in ppm (parts per million).

NTR1501-1511, NTR1601-1612 (Newmont 1990) = ATR-32313 WA DMIRS WAMEX Publicly Available Report

A series of RAB holes were reported (ATR-32313). Originally, hole identifiers had the format NTR15-1. Later reports had different formats (NTR1501). Naming convention was matched to this format for consistency with other data in the database.

Location data was captured from geospatially referencing location maps provided in ATR-32313. This data has since been verified as nominally accurate when comparing to later generation maps and reports. Locations are considered nominal.

Analytical data was reported in hard copy format (ATR-32313 – 1990). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. No record of analytical method was recorded. Elements analysed include; Au, Cu, Pb, Zn, Co, Ag and As. All elements were reported in ppm (parts per million).

TRB0101-104, TRB201-214 (Newcrest 1991) = ATR-35202 WA DMIRS WAMEX Publicly Available Report

A series of RAB holes were reported (ATR-35202).

AMG co-ordinates were listed on hard copy geological logging. These values were converted to MGA94.

Analytical data was reported in hard copy format (ATR-35202 – 1991). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Pb, Zn, Co, Bi and As. All elements were reported in ppm (parts per million). Analysis was listed as acid digest, atomic absorption spectrometry (ASS) for multi elements and AAS for gold.

TRB0301-305 (Newcrest 1991) = ATR-37600 & ATR-35202 WA DMIRS WAMEX Publicly Available Reports

A series of RAB holes were reported (ATR-37600).

AMG co-ordinates were listed on hard copy geological logging. These values were converted to MGA94.

Analytical data was reported in hard copy format (ATR-35202 – 1991). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Pb, Zn, Co, Bi and As. All elements were reported in ppm (parts per million). Analysis was listed as acid digest, atomic absorption spectrometry (ASS) for multi elements and AAS for gold.

TRB0306-314, TRB0401-409, TRB0501-505, TRB0601-603 (Newcrest 1992) = ATR-37527 WA DMIRS WAMEX Publicly Available Report

A series of RAB holes were reported (ATR-37527).

AMG co-ordinates were listed on hard copy geological logging. These values were converted to MGA94.

Analytical data was reported in hard copy format (ATR-37527 – 1992). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Pb, Zn, Co, Bi, W and As. All elements were reported in ppm (parts per million). Analysis was listed as acid digest, atomic absorption spectrometry (ASS) for multi elements and AAS for gold.

ANK186, ANK191 (BHP 1993) = ATR-40280 WA DMIRS WAMEX Publicly Available Report

A series of RAB holes were reported (ATR-40280).

AMG co-ordinates were listed on hard copy geological logging. These values were converted to MGA94.

Analytical data was reported in hard copy format (ATR-40280 – 1993). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Cu (ppm), Zn(ppm), Pb(ppm), Zn(ppm) (ppm), Pb(ppm), Ni(ppm), Ag(ppm), Mo(ppm), W(ppm), Co(ppm), Cr(ppm), Cd(ppm), Fe(%), Mn(%), Mg(ppm), Bi(ppm), Pd(ppb), Sn(ppm) and As(ppm). Analysis was listed as inductive coupled plasma mass spectrometry (ICP) for multi elements and aqua regia for gold.

FLB0101-104, FLB0201-204 (Newcrest 1993) = ATR-40307 WA DMIRS WAMEX Publicly Available Report

A series of RAB holes were reported (ATR-40307).

AMG co-ordinates were listed on hard copy geological logging. These values were converted to MGA94.

Analytical data was reported in hard copy format (ATR-40307 – 1993). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Pb, Zn, Co, Bi, W and As. All elements were reported in ppm (parts per million). Analysis was listed as acid digest, atomic absorption spectrometry (ASS) for multi elements and AAS for gold.

TRR010-104, TRR0201-204, TRR0301-302, TRR0401, TRR0501-504 (Newcrest 1993) = ATR-40307 WA DMIRS WAMEX Publicly Available Report

A series of RC holes were reported (ATR-40307).

AMG co-ordinates were listed on hard copy geological logging. These values were converted to MGA94.

Analytical data was reported in hard copy format (ATR-40307 – 1993). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Pb, Zn, Co, Bi, W and As. All elements were reported in ppm (parts per million). Analysis was listed as acid digest, atomic absorption spectrometry (ASS) for multi elements and AAS for gold.

AND364 (BHP 1994) = ATR-43833 & ATR-40280 WA DMIRS WAMEX Publicly Available Reports

A single diamond hole was reported (ATR-43833).

AMG co-ordinates were listed on hard copy geological logging. These values were converted to MGA94.

Analytical data was reported in hard copy format (ATR-40280 – 1993). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Cu (ppm), Zn(ppm), Pb(ppm), Zn(ppm) (ppm), Pb(ppm), Ni(ppm), Ag(ppm), Mo(ppm), Co(ppm), Cd(ppm), Fe(%), Mn(%), Mg(ppm), Bi(ppm), and As(ppm). Analysis was listed as inductive coupled plasma mass spectrometry (ICP) for multi elements and aqua regia for gold.

TRC001-TRC028 (Newcrest 1996) = ATR-50486 WA DMIRS WAMEX Publicly Available Report

A series of RC holes were reported (ATR-50486).

AMG co-ordinates were listed. These values were converted to MGA94.

Analytical data was reported in hard copy format (ATR-50486 – 1996). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au (ppm), Cu (ppm), Pb(ppm), Pb(ppm), Bi(ppm), and As(ppm). Analysis was listed as aqua regia digest with graphite furnace atomic absorption spectrometry. Higher grade gold (>0.10 g/t) were repeated with flame atomic absorption spectrometry.

TDT001 and TRC029-TRC038 (Newcrest 1997) = ATR-53740 WA DMIRS WAMEX Publicly Available Report

A series of RC holes and a single diamond hole were reported (ATR-53740).

AMG co-ordinates were listed. These values were converted to MGA94.

Analytical data was reported in hard copy format (ATR-53740 – 1997). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au (ppb), Cu (ppm), Pb(ppm), Pb(ppm), Bi(ppm), and As(ppm). Analysis was listed as aqua regia digest with graphite furnace atomic absorption spectrometry. Higher grade gold (>0.10 g/t) were repeated with flame atomic absorption spectrometry.

CTR325, CTR326, DT2_H1, DT2_H2, DT2_H3, DT1-H1- DT1-H15, PDH1_1 – PDH_18, PDH2_20 – PDH_29, PDH3_30 – PDH3_37, PDH19, PDH 38 and TR41 = ATR-50486 & ATR-57759 WA DMIRS WAMEX Publicly Available Reports

In 1996 (ATR-50486), Newcrest reported all historical data within its 'Triangle' lease. Several drillholes were reported that had not been reported in previous open file reports. Subsequently and within the final surrender report (ATR- 57759), these holes were also reported in digital format.

AMG co-ordinates were listed. These values were converted to MGA94.

Only significant assay results were reported (ATR-50486). These values were manually entered as intervals into the Company's database. Data is considered nominal.

ADDENDUM TO JORC TABLE 1a – DRILL HOLE DATA: Pajero Area Granted Exploration Licence (E45/4518):

Individual detailed descriptions of the JORC Criteria for the various Pajero area granted exploration licence (E45/4518) exploration programmes completed between 1977 to 2000 which are the subject of this public disclosure:

P1NE*, PNSR* (Geopecko – 1977) = ATR-7884 WA DMIRS WAMEX Publicly Available Report

AMG66 co-ordinates reported on drill hole log sheets (ATR-7884 - 1977). These co-ordinates were verified against provided maps and converted to MGA94.

Drill holes were subsequently reported in a various annual and surrender reports. All data was consistent.

All drilling methods were reported as combinations of air core and percussion drilling.

Analytical data was reported in hard copy format (ATR-7884). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Ag, Cu, Pb, Zn, As, Fe. All elements were reported in ppm (parts per million) with the exception of Fe, which was reported in percent. Analytical method was recorded as acid digest with non-atomic absorption for multi element and aqua regia for gold.

CSMH73-108, 123-130 (Duval - 1985) = ATR-17053 WA DMIRS WAMEX Publicly Available Report

Local grid (traverse) co-ordinates were reported on drill hole log sheets (ATR-17053 - 1985). Location data was initially captured from geospatially registered maps. Validation was completed against later annual and surrender reports where the holes were also report.

Drill holes were listed as RAB.

Analytical data was reported in hard copy format (ATR-17053). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, As, Zn, Pb, Ag and Mn. All elements were reported in ppm (parts per million). Analytical method was not reported.

CSMH214-223, 240-257, 319-345 (Duval – 1986) = ATR-19291 WA DMIRS WAMEX Publicly Available Report

Local grid (traverse) co-ordinates were reported on drill hole log sheets (ATR-19291 - 1985). Location data was initially captured from geospatially registered maps. Validation was completed against later annual and surrender reports where the holes were also report.

Drill holes were listed as RAB.

Analytical data was reported in hard copy format (ATR-19291). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, As, Zn, Pb, Ag and Mn. All elements were reported in ppm (parts per million). Analytical method was not reported.

SM1A-*, SM2-*, SM3-*, SM6-*, SM7-*, SM8-* (Newcrest – 1989) = ATR-28003 WA DMIRS WAMEX Publicly Available Report

Location data was initially captured from geospatially registered maps (ATR-28003 - 1989). Validation was completed against later annual and surrender reports where the holes were also report.

Drill holes were listed as RAB.

Analytical data was reported in hard copy format (ATR-28003). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Co, Zn, As, Ag and Pb. All elements were reported in ppm (parts per million). Analytical method was not reported.

BL89-1, BL89-3 (Newmont – 1989) = ATR-32314 and ATR-28003 WA DMIRS WAMEX Publicly Available Reports

Location data was initially captured from geospatially registered maps (ATR-32314 - 1989). Validation was completed against later annual and surrender reports where the holes were also report.

Drill holes were listed as Diamond.

Analytical data was reported in hard copy format (ATR-28003). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Pb, As, Zn, Ag and Co. All elements were reported in ppm (parts per million). Analytical method was not reported.

CR269-275, 317-333 (MIM – 1994) = ATR-40539 WA DMIRS WAMEX Publicly Available Report

Local grid co-ordinates were reported on drill hole log sheets (ATR-40539 – 1994). Location data was initially captured from geospatially registered maps. Validation was completed against later annual and surrender reports where the holes were also report.

Drill holes were listed as RAB.

Analytical data was reported in hard copy format (ATR-40539). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Pb, As, Zn, Ag and Co. All elements were reported in ppm (parts per million). Analytical method was not reported.

CRAC01-15 (MIM – 1996) = ATR-47879 WA DMIRS WAMEX Publicly Available Report

Local grid (traverse) co-ordinates were reported on drill hole log sheets (ATR-47879 - 1994). Location data was initially captured from geospatially registered maps. Validation was completed against later annual and surrender reports where the holes were also report.

Drill holes were listed as RAB.

Analytical data was reported in hard copy format (ATR-47879). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Pb, As, Zn, Ag and Co. All elements were reported in ppm (parts per million). Analytical method was reported as atomic absorption spectrometry, with gold listed as B/ETA.

TRB001-25 (Mt Burgess - 1997) = ATR-50693 WA DMIRS WAMEX Publicly Available Report

Local grid co-ordinates were reported on drill hole log sheets (ATR-50693 – 1997). Location data was initially captured from geospatially registered maps. Validation was completed against later annual and surrender reports where the holes were also report.

Drill holes were listed as RAB.

Analytical data was reported in hard copy format (ATR-50693). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Pb, As, Zn, Ag and Co. All elements were reported in ppm (parts per million). Analytical method was not reported.

CRA403-438 (Mt Burgess - 1997) = ATR-54530 WA DMIRS WAMEX Publicly Available Report

Local grid co-ordinates were reported on drill hole log sheets (ATR-54530 – 1997). Location data was initially captured from geospatially registered maps. Validation was completed against later annual and surrender reports where the holes were also report.

Drill holes were listed as RAB.

Analytical data was reported in hard copy format (ATR-54530). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Pb, As, Zn and Co. All elements were reported in ppm (parts per million). Analytical method was not reported.

SHR010-019 (Newcrest – 1998) = ATR-53501 WA DMIRS WAMEX Publicly Available Report

Location data reported in hard copy format as AMG84 co-ordinates. (ATR-53501 – 1989). These co-ordinates were transformed to MGA94. Validation was completed against later annual and surrender reports where the holes were also report.

Drill holes were listed as RC.

Analytical data was reported in hard copy format (ATR-53501). This data was manually data entered into the Company's database system. Validation was completed to ensure data entry accuracy. Elements analysed include; Au, Cu, Pb, Bi and As. All elements were reported in ppm (parts per million) except Au which was reported in ppb (part per billion). Analytical method was not reported.

YAC* and YRB* (Normandy 1998-2000) = ATR-57455, 57777, 60195, 61907, and ATR-104954 WA DMIRS WAMEX Publicly Available Reports

Location data was reported in digital (WAMEX) reporting format (ATR-57455, 57777, 60195 and 61907). Location data was reported in both local and AMG84 co-ordinates. Locations were transformed to MGA94.

Holes were listed as Aircore (YAC*) and RAB (YRB*).

Analytical data was reported in digital (WAMEX) reporting format (ATR-57455, 57777, 60195 and 61907). Elements analysed included Au, Ag, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, P, Pb, Sb, V and Zn. All elements were reported in ppm (parts per million). Au was reported as Aqua regia, atomic absorption spectrometry with all other elements as aqua regia with inductive coupled plasma optical emission spectrometry.

47 holes in the YAC and YRB series were reported a final surrender report (ATR-104954, Newcrest - 2015) which had not previously been reported. Only location and downhole survey data was reported. No previous record of these holes can be located in the previous (Normandy 1998 - 2000) reports.