

DISCOVERY OF SIGNIFICANT NEW ZONES OF HIGH-GRADE GOLD MINERALISATION AT 100% OWNED MINYARI DEPOSIT

Highlights

- RC drilling at Minyari returns multiple high-grade gold and copper intersections, including new "Minyari East" discovery where further significant zones of gold-copper-silver-cobalt mineralisation were intersected outside the existing Mineral Resource
- Significant results for the first eleven RC holes (3,129m) include:
 - > New "Minyari East" Discovery:
 - **31.0m at 3.20 g/t gold** and 0.26% copper from 383.0m down hole to end-of-hole in 21MYC0205, including:
 - o **2.0m at 17.54 g/t gold, 1.40% copper** and 2.19 g/t silver from 390.0m, also including:
 - 1.0m at 32.10 g/t gold, 2.29% copper and 3.83 g/t silver from 391.0m
 - 2.0m at 18.80 g/t gold, 0.82% copper and 2.30 g/t silver from 397.0m, also including:
 - 1.0m at 33.00 g/t gold, 0.80% copper and 3.56 g/t silver from 398.0m
 - **6.0m at 16.83 g/t gold**, 0.50% copper and 0.96 g/t silver from 335.0m down hole in 21MYC0208, including:
 - o **1.0m at 58.90 g/t gold**, 0.75% copper and 1.88 g/t silver from 339.0m
 - 22.0m at 2.60 g/t gold and 0.08% copper from 294.0m down hole in 21MYC0200, including:
 - o **1.0m at 42.30 g/t gold**, 0.16% copper and 1.03 g/t silver from 294.0m

> Minyari Resource Infill:

- **21.0m at 3.58 g/t gold**, 0.64% copper and 1.66 g/t silver from 100.0m down hole in 21MYC0208, including:
 - 8.0m at 4.86 g/t gold, 1.27% copper and 3.01 g/t silver from 101.0m, also including:
 - 1.0m at 20.60 g/t gold, 2.85% copper and 8.25 g/t silver from 102.0m
- **38.0m at 1.71 g/t gold** and 0.05% copper from 122.0m down hole in 21MYC0204, including:
 - 2.0m at 10.16 g/t gold and 0.13% cobalt from 140.0m
- **56.0m at 1.20 g/t gold**, 0.42% copper and 1.08 g/t silver from 136.0m down hole in 21MYC0201
- 119.0m at 0.86 g/t gold and 0.08% copper from 70.0m down hole in 21MYC0207, including:
 - o **10.0m at 2.21 g/t gold** and 0.24% copper from 92.0m
- 4.0m at 6.49 g/t gold, 0.26% copper and 0.11% cobalt from 149.0m down hole in 21MYC0200
- New Minyari East high-grade gold-copper mineralisation:
 - 1. **Enhances Resource and development opportunity** Just 80m east of the existing Minyari Mineral Resource boundary
 - 2. Remains open in all directions Intersected along 140m of strike and 150m of dip
 - 3. Further potential Multiple additional zones of mineralisation within eastern zone
 - 4. Diamond tails and additional RC and diamond drilling planned
- 13,000m of 21,000m Resource infill, Resource extensional and brownfield discovery drill programme completed Three drill rigs currently on site (awaiting assays for 10,000m)

Antipa Minerals Limited (ASX: **AZY**) (**Antipa** or the **Company**) is pleased to announce the first batch of assay results (3,129m) for the 2021 drill programme on its 100% owned, 144km² Minyari Dome Project in Western Australia's Paterson Province (Figures 1 and 2). The Project is located within 35km of Newcrest Mining's (**Newcrest**) Telfer gold–copper-silver mine and mineral processing facility and 54km along strike from Greatland Gold-Newcrest's Havieron gold-copper development project.

Antipa Managing Director, Roger Mason, said: "With nine rigs currently drilling across our four Paterson Province projects, we are in the middle of the most active drilling year in Antipa's history. The first batch of Minyari deposit 2021 RC drill results confirm the potential for significant resource growth and a stand-alone development opportunity based on an open pit and underground mining operation close to Telfer.

The newly discovered Minyari East mineralisation remains open in all directions, as do the existing Minyari and WACA resources which, when combined with several untested Minyari geophysical anomalies, demonstrates the potential for this year's Minyari Dome Project exploration programme, which will be the largest programme we have ever undertaken at Minyari, to identify additional gold-copper mineralisation that can materially enhance project economics."

Summary of Drilling Results

The 2021 Phase 1 drill programme, which commenced early May, is designed to:

- Test for extensions of both the Minyari and WACA resources, which combined, host a highgrade JORC 2012 Mineral Resource Estimate of 723koz gold at 2.0 g/t and 26kt copper at 0.24%¹ (Figure 3);
- 2. Explore for new zones of mineralisation proximal to the existing resources such as the new Minyari East discovery;
- 3. Elevate the existing Mineral Resource JORC classification via 25m infill drill sections (i.e. designed to upgrade the existing Inferred sections of the Resource to Indicated and the Indicated sections to Measured Mineral Resource); and
- Provide the basis for project development studies.

Assay results have been received for eleven RC drill holes (including one partial hole) (3,129m), which demonstrate favourable compatibility with the current Mineral Resource domains and have discovered significant additional high-grade gold-copper mineralisation immediately east of the Minyari resource ("Minyari East") where drilling intersected high-grade gold-copper-silver-cobalt mineralisation grading up to 60 g/t gold, 14% copper, 25 g/t silver, and 1.2% cobalt (refer to Tables 1, 2 a-b and 3 and Figures 3 to 9).

Initial drill results have already:

- Proven that significant zones of very high-grade gold-copper-silver-cobalt mineralisation exist outside the current Minyari deposit Mineral Resource estimate boundary;
- Discovered new high-grade gold-copper mineralisation at "Minyari East";
- Have further confirmed that high-grade mineralisation is commonly associated with sulphide matrixed breccia zones analogous to the Havieron gold-copper style of mineralisation; and
- Minyari mineralisation remains open down plunge, along strike to the north, variously open across strike to the east ± west, and potentially open to the south up plunge and at depth.

¹ Mineral Resource information refer to Competent Person's statement and table to the rear of this Release

Minyari East:

- Is located just 80m east of the existing Minyari Mineral Resource boundary;
- Intersected mineralisation along 140m of strike and 150m of dip;
- · Remains open in all directions;
- Enhances the resource growth and development opportunity at Minyari/WACA;
- Further potential exists in this eastern region, with multiple additional zones of mineralisation intersected; and
- As several of the eleven RC drill holes ended in mineralisation due to the depth capacity limitations of the RC rig (including 21MYC0200, 21MYC0205 and 21MYC0208), these holes will be re-entered with diamond drilling to extend their depth to further evaluate the extent of the high-grade Minyari East mineralisation.

Minyari Dome High Priority Targets and Minyari Dome CY21 Exploration Programme

The 2021 Phase 1 programme was planned to consist of 21,000m of drilling, being 15,000m of RC plus 6,000m of diamond core. RC and diamond drilling commenced 8 May and 27 May respectively, and to date approximately 10,000m of RC and 3,000m of diamond have been completed.

The Phase 1 drill programme was scheduled to be completed by mid-August, however because of the initial drill results Antipa will add additional drilling to the planned Phase 1 programme with the objective of fast-tracking the drill evaluation of the high-grade Minyari East lode and broader eastern Minyari target area, including:

- Diamond core drill extensions to a selection of 2021 RC drill holes;
- Additional RC drill holes up dip and also up plunge to the south; and
- Additional diamond core holes down dip and also down plunge to the north.

Further information regarding programme modifications will be provided following completion of the Company's review of these exciting drill results.

Drill samples will be batched and dispatched for assay on a periodic basis and announcements will be made as assays are received.

Release authorised by Stephen Power Executive Chairman

For further information, please visit www.antipaminerals.com.au or contact:

Roger Mason	Stephen Power	Angela East
Managing Director	Executive Chairman	Associate Director
Antipa Minerals Ltd	Antipa Minerals Ltd	Media & Capital Partners
+61 (0)8 9481 1103	+61 (0)8 9481 1103	+61 (0)428 432 025

Table 1: Significant intersections from the first eleven Minyari deposit 2021 RC holes

Hole ID	Area	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)	Silver (g/t)	Cobalt (ppm)
21MYC0199	Minyari	217.0	234.0	17.0	1.36	0.07	0.09	80
	Including	217.0	220.0	3.0	4.58	0.13	0.11	166
	Including	227.0	229.0	2.0	2.91	0.13	0.19	103
21MYC0200	Minyari	149.0	153.0	4.0	6.49	0.26	0.66	1,083
	Including	151.0	152.0	1.0	19.05	0.42	1.37	3,120
21MYC0200	Minyari	169.0	170.0	1.0	6.65	0.09	21.60	58
21MYC0200	Minyari	294.0	316.0	22.0	2.60	0.08	0.17	38
	Including	294.0	295.0	1.0	42.30	0.16	1.03	47
21MYC0200	Minyari	356.0	380.0	24.0	1.42	0.17	0.49	65
	Including	359.0	360.0	1.0	11.60	1.64	3.26	334
	Including	371.0	373.0	2.0	3.33	0.20	0.19	51
	Including	379.0	380.0	1.0	5.35	0.45	2.40	151
21MYC0200	Minyari	394.0	400.0	6.0	2.18	0.25	0.68	764
	Including	394.0	396.0	2.0	3.26	0.42	1.36	329
	Including	399.0	400.0	1.0	5.28	0.34	0.72	1,825
21MYC0201	Minyari	136.0	192.0	56.0	1.20	0.42	1.08	289
	including	136.0	138.0	2.0	9.35	5.22	12.35	1,113
	also incl.	137.0	138.0	1.0	15.35	5.40	13.70	1,210
	including	156.0	160.0	4.0	2.88	0.80	2.54	471
2411/00204	including	168.0	170.0	2.0	4.83	1.02	2.56	780
21MYC0201	Minyari	294.0	297.0	3.0	2.59	0.39	0.96	174
24 1 4 4 5 6 2 6 2	Including	295.0	296.0	1.0	6.31	0.60	1.69	222
21MYC0202	Minyari	19.0	29.0	10.0	0.96	0.12	0.12	498
24 8 4 4 C 0 2 0 2	Including	19.0	21.0	2.0	3.44	0.30	0.03	1,77
21MYC0203	Minyari	61.0	73.0	12.0	1.09	0.25	0.67	1,089
21MYC0204	Including	66.0	67.0	1.0	8.41 1.71	0.90	2.56	48° 65!
211011 CU2U4	Minyari including	122.0 132.0	160.0 138.0	38.0 6.0	3.31	0.05 0.05	0.15 0.10	1,37
	Also Incl.	132.0	133.0	1.0	5.61	0.03	0.10	4,41
	Also Incl.	135.0	136.0	1.0	8.09	0.04	0.08	1,05
	including	140.0	142.0	2.0	10.16	0.07	0.12	1,34
	Also Incl.	141.0	142.0	1.0	16.35	0.01	0.09	1,69
	including	157.0	159.0	2.0	7.02	0.02	1.05	494
	Also Incl.	158.0	159.0	1.0	11.45	0.47	1.68	70:
21MYC0204	Minyari	184.0	194.0	10.0	1.87	0.41	0.95	62
211111111111111111111111111111111111111	Including	184.0	186.0	2.0	5.44	0.80	1.98	88
21MYC0204	Minyari	249.0	250.0	1.0	5.71	0.18	0.22	18
21MYC0205	Minyari	112.0	141.0	29.0	1.19	0.72	1.43	21
21MYC0205	Minyari	383.0	414.0	31.0	3.20	0.26	0.57	10
2211111 00203	Including	385.0	386.0	1.0	6.22	0.80	3.51	7
	including	390.0	392.0	2.0	17.54	1.40	2.19	40
	Also Incl.	391.0	392.0	1.0	32.10	2.29	3.83	59
	Including	397.0	399.0	2.0	18.80	0.82	2.30	26
	Also Incl.	398.0	399.0	1.0	33.00	0.80	3.56	31
21MYC0207	Minyari	70.0	189.0	119.0	0.86	0.08	0.15	78
	Including	92.0	102.0	10.0	2.21	0.24	0.43	1,83
	Also Incl.	100.0	102.0	2.0	7.58	0.81	1.48	2,70
	Including	129.0	130.0	1.0	3.20	0.02	0.04	3,72
	Including	133.0	138.0	5.0	3.97	0.02	0.04	2,78
	Including	166.0	168.0	2.0	5.43	0.26	0.48	46
	Including	172.0	174.0	2.0	6.90	0.17	0.39	9,37
	Including	188.0	189.0	1.0	5.49	0.27	0.70	26
21MYC0208	Minyari	100.0	121.0	21.0	3.58	0.64	1.66	25
	Including	101.0	109.0	8.0	4.86	1.27	3.01	30
	also incl.	102.0	103.0	1.0	20.60	2.85	8.25	58
	also incl.	106.0	107.0	1.0	2.43	1.51	3.17	35
	also incl.	108.0	109.0	1.0	8.66	0.87	2.66	18
	including	114.0	115.0	1.0	5.21	1.25	3.55	49
	including	119.0	120.0	1.0	17.70	0.88	3.85	52
21MYC0208	Minyari	264.0	269.0	5.0	1.68	0.31	0.73	9
	Including	267.0	268.0	1.0	4.11	0.28	0.56	6
21MYC0208	Minyari	335.0	341.0	6.0	16.83	0.50	0.96	19
	Including	339.0	340.0	1.0	58.90	0.75	1.88	232
21MYC0216 ¹	Minyari	233.0	249.0	16.0	1.25	0.65	1.84	82
	•							

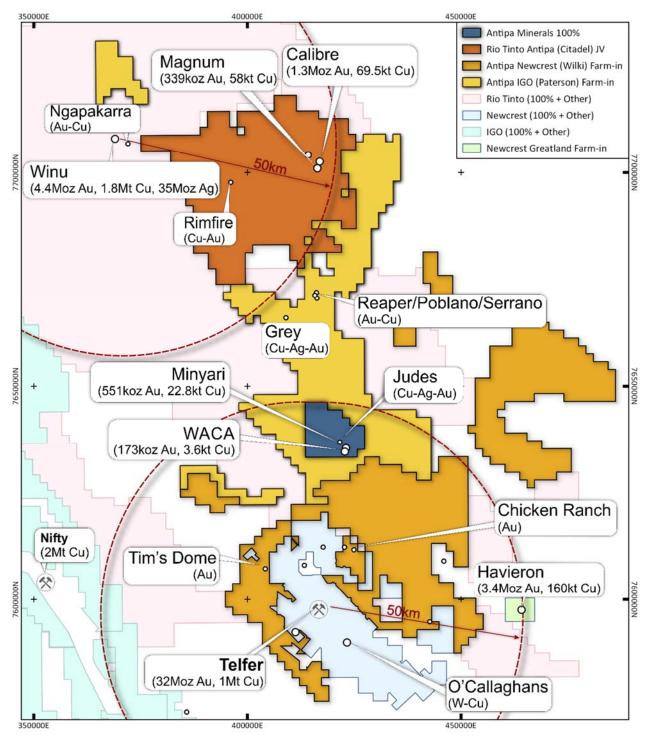


Figure 1: Plan showing location of Antipa 100% owned tenements, Rio Tinto-Antipa Citadel Joint Venture Project, including the Calibre and Magnum deposits. Also shows Antipa-Newcrest Wilki Farmin, Antipa-IGO Paterson Farm-in, Newcrest Mining Ltd's Telfer Mine and O'Callaghans deposit, Rio Tinto's Winu deposit, Greatland Gold plc's/Newcrest's Havieron deposit and Metals X Nifty Mine.

NB: Rio and IGO tenement areas include related third-party Farm-in's/Joint Ventures.

NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 50km grid.

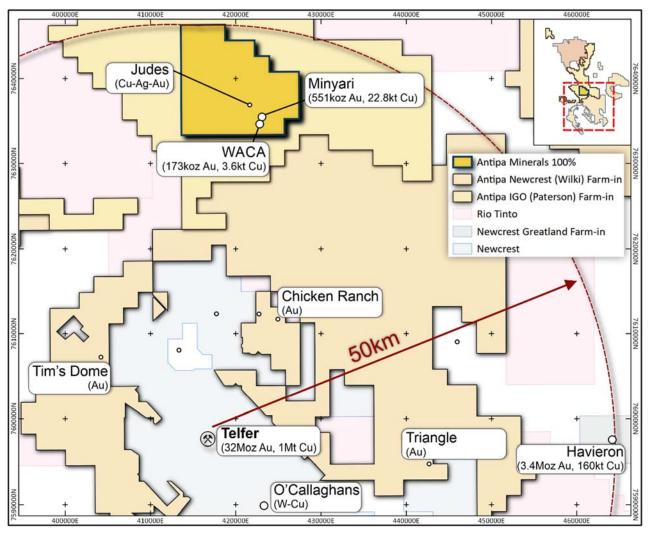


Figure 2: Project Location map showing Antipa's Minyari Dome (100%) Project and proximity to Newcrest Mining Ltd's Telfer Gold-Copper-Silver mine and processing facility.

NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 10km grid.

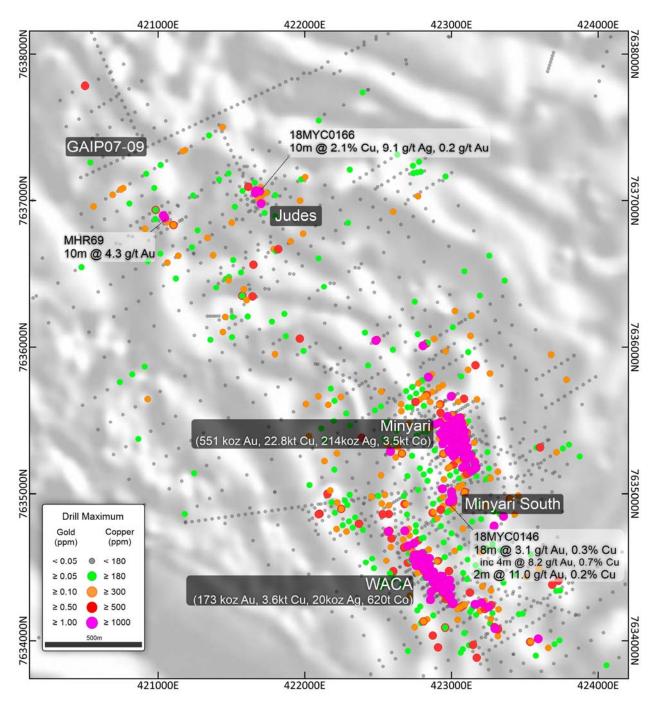


Figure 3: Map of the southern region of the Minyari Dome Project showing Minyari and WACA resource locations, Judes prosect and GAIP07-09 target locations, and drill hole maximum downhole gold and copper. NB: Over Airborne magnetic image (50m flight-line spacing at an altitude of 30m; grey-scale TMI-RP) and Regional GDA2020 / MGA Zone 51 co-ordinates, 1km grid.

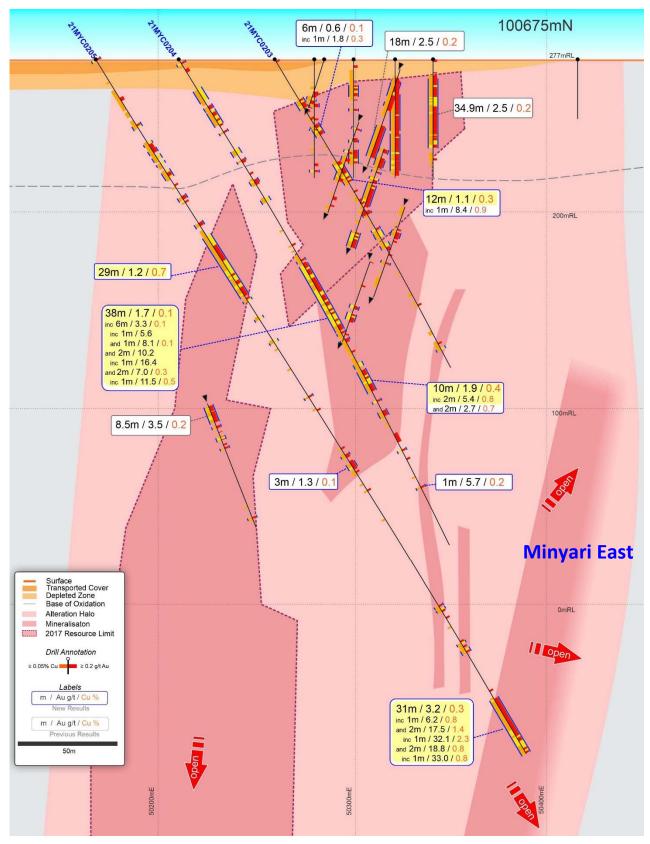


Figure 4: Minyari gold-copper-silver-cobalt deposit 100,675mN cross-section showing high-grade gold drill intercepts, with the deposit open down dip and along strike/plunge.

NB: 200m Local Grid co-ordinates, looking toward Local 360° (or 328° MGA Zone 51).

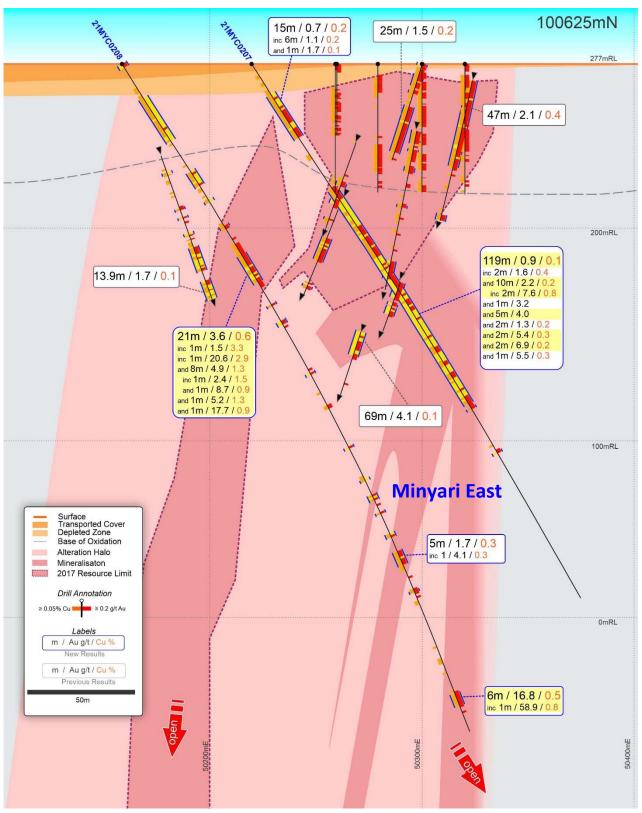


Figure 5: Minyari gold-copper-silver-cobalt deposit 100,625mN cross-section showing high-grade gold drill intercepts, with the deposit open down dip and along strike/plunge.

NB: 200m Local Grid co-ordinates, looking toward Local 360° (or 328° MGA Zone 51).

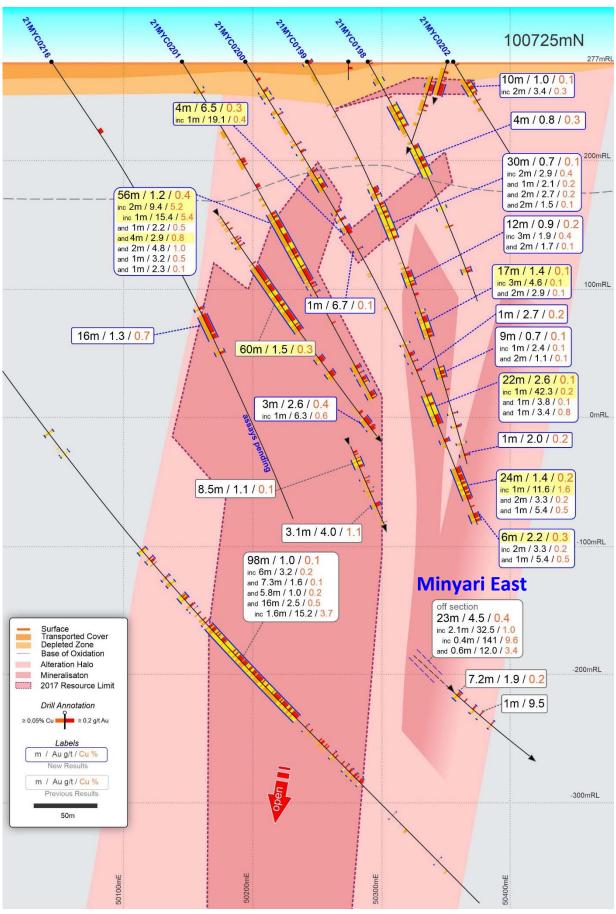


Figure 6: Minyari gold-copper-silver-cobalt deposit 100,725mN cross-section showing high-grade gold drill intercepts, with the deposit open down dip and along strike/plunge.

NB: 200m Local Grid co-ordinates, looking toward Local 360° (or 328° MGA Zone 51).

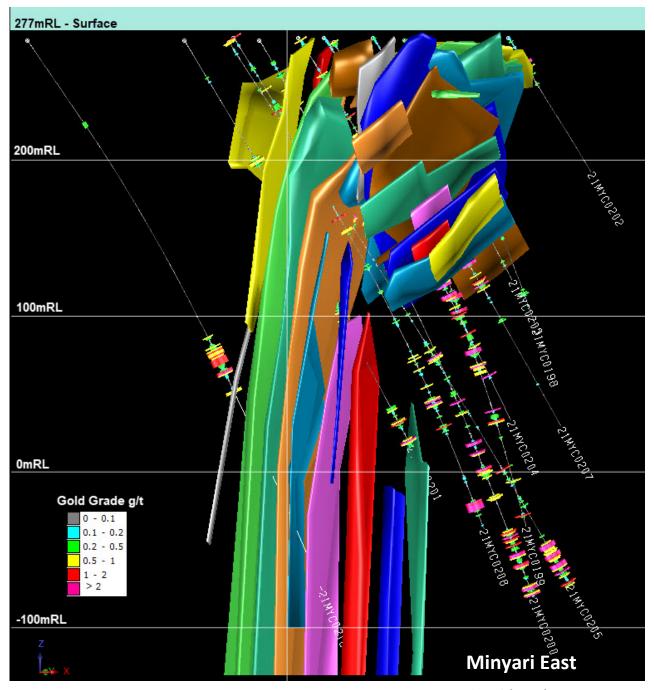


Figure 7: Minyari deposit 2D-Persective view looking toward a bearing of 337° (MGA) showing distribution of gold mineralisation for all eleven 2021 RC drill holes with assays and 2017 Mineral Resource Envelopes. Note significant gold (and copper±silver±cobalt) mineralisation outside the existing Mineral Resource. NB: 100m vertical grid co-ordinates. Also note that the diagram view bearing of 337° is optimised to allow viewing of all 2021 RC drill holes with assays, i.e. not looking along strike of mineralisation.

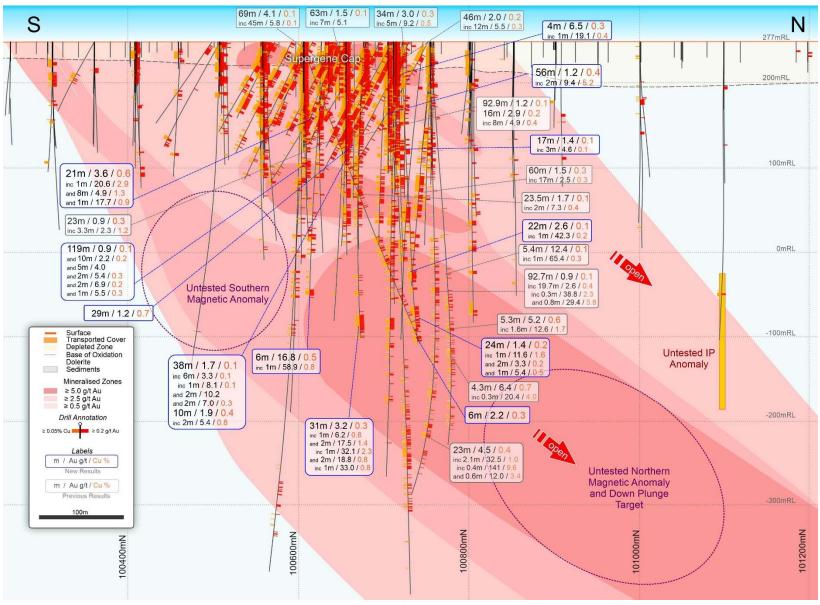


Figure 8: Minyari deposit Long Section view showing distribution of gold-copper mineralisation, and northern and southern target areas.

NB: 200mRL Local Grid, long section looking toward magnetic bearing 270° (or 238° MGA Zone 51).

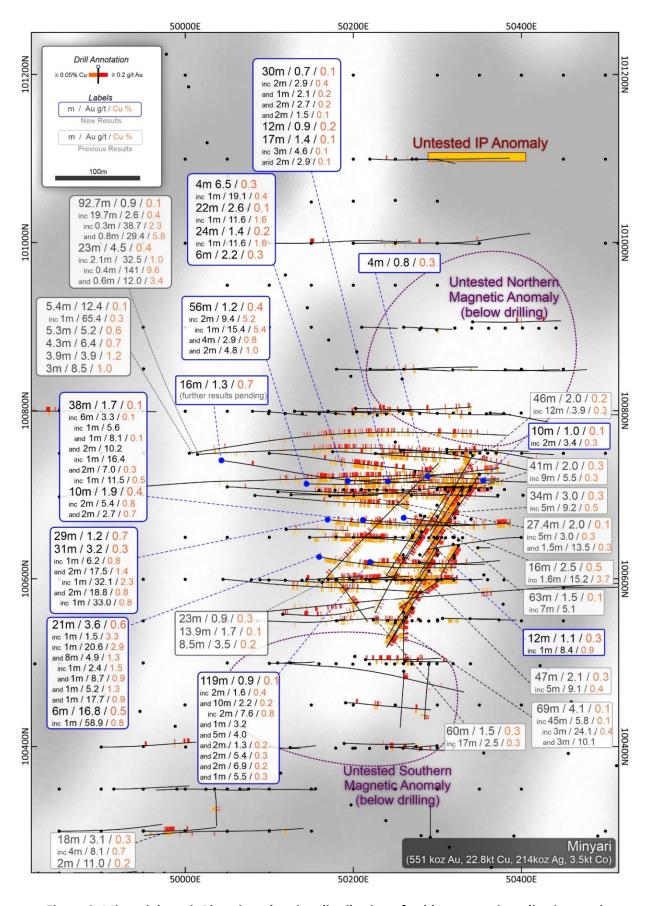
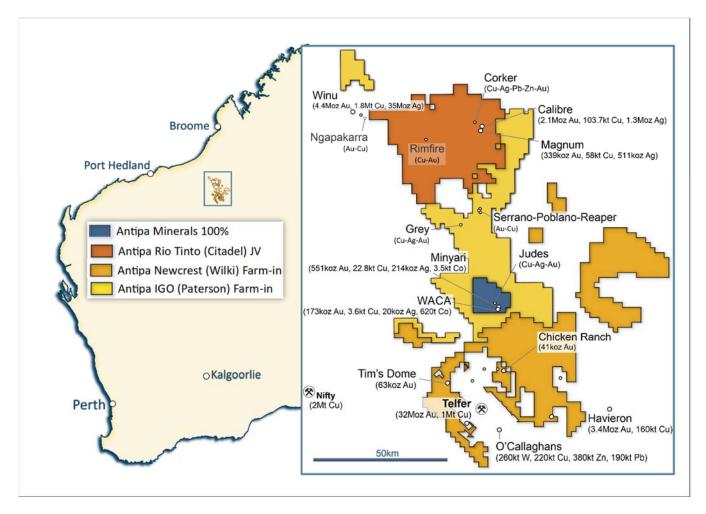



Figure 9: Minyari deposit Plan view showing distribution of gold-copper mineralisation, and northern and southern target areas. NB: Over Airborne magnetic image (50m flight-line spacing at an altitude of 30m; grey-scale TMI-RP) and 200m Local Grid co-ordinates.

About Antipa Minerals: Antipa is a mineral exploration company focused on the Paterson Province in north-west Western Australia, home to Newcrest Mining's world-class Telfer gold-copper mine, Rio Tinto's Winu copper-gold deposit, Greatland Gold-Newcrest's recent Havieron gold-copper discovery and other significant mineral deposits. Having first entered the Paterson in 2011 when it was a less sought-after exploration address, the Company has used its early mover advantage to build an enviable tenement holding of ~5,200km², including the ~1,300km² Citadel Joint Venture Project with Rio Tinto (who currently holds a 65% joint venture interest), the ~2,200km2 Wilki Project that is subject to a \$60 million Farm-in and Joint Venture Agreement with Newcrest (who is yet to earn a joint venture interest) and the ~1,500km² Paterson Project that is subject to a \$30 million Farm-in and Joint Venture Agreement with IGO (who is yet to earn a joint venture interest). The Citadel Project lies within 5km of the Winu deposit and contains a Mineral Resource of 2.4 million ounces of gold and 162,000 tonnes of copper from two deposits, Calibre and Magnum. Antipa retains 144km² of 100%-owned Minyari Dome Project tenements which contains an established Mineral Resource, with the Minyari and WACA deposits containing 723,000 ounces of gold and 26,000 tonnes of copper plus other deposits and high quality exploration targets. Unlike certain parts of the Paterson where the post mineralisation (younger) cover can be kilometres thick, making for difficult exploration, the Company's combined 5,200km² tenement portfolio features relatively shallow cover; approximately 80% being under less than 80 metres of cover. Extensive drilling and geophysical surveys are planned for 2021 across Antipa's combined Paterson tenement portfolio as the company pursues a dual strategy of targeting tier-one greenfields discoveries and growing its existing resources through brownfields exploration.

Forward-Looking Statements: This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Antipa Mineral Ltd's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward-looking statements. Although Antipa Minerals Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Competent Persons Statement – Exploration Results: The information in this document that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Roger Mason, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Mason is a full-time employee of the Company. Mr Mason is the Managing Director of Antipa Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Mason has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements, all of which are available to view on www.asx.com.au. Mr Mason, whose details are set out above, was the Competent Person in respect of the Exploration Results in these original market announcements.

Various information in this report which relates to Exploration Results have been extracted from the following announcements lodged on the ASX, where further details, including JORC Code reporting tables where applicable, can also be found:

•	North Telfer Project Update on Former NCM Mining Leases	3 December 2015
•	High Grade Gold Mineralisation at Minyari Dome	8 February 2016
•	Minyari Deposit Drilling to Commence May 2016	2 May 2016
•	Minyari Phase 1 Drilling Commences	2 June 2016
•	Further Historical High-grade Gold Intersections at Minyari	14 June 2016
•	Minyari Reprocessed IP Survey Results	5 July 2016
•	Minyari Phase 1 Drilling Update No. 1	20 July 2016
•	Completion of Phase 1 Minyari Deposit RC Drilling Programme	9 August 2016
•	Minyari Drilling Update No. 3	17 August 2016
•	Minyari Drilling Update No. 4	29 September 2016
•	Minyari Dome - Phase 2 Exploration Programme Commences	31 October 2016
•	North Telfer and Citadel Exploration Programme Update	16 November 2016
•	Minyari Dome Drilling Update No. 1	16 December 2016
•	Minyari Dome and Citadel – Phase 2 Update	9 February 2017
•	Minyari Dome 2017 Exploration Programme	27 March 2017
•	Minyari Dome 2017 Phase 1 Exploration Programme Commences	13 April 2017
•	Minyari Dome Positive Metallurgical Test Work Results	13 June 2017
•	High-Grade Gold Intersected at North Telfer Project Revised	21 June 2017
•	Drilling Extends High-Grade Gold Mineralisation at WACA	25 July 2017
•	High-Grade Gold Mineralisation Strike Extension at Minyari Deposit	4 August 2017
•	Minyari Dome Phase 1 Final Assay Results	31 August 2017
•	Minyari/WACA Deposits Maiden Mineral Resource	16 November 2017
•	Air Core Programme Highlights Minyari and WACA Deposit	5 December 2017
•	Minyari Dome 2017 Air Core Drilling Results	29 January 2018
•	Antipa to Commence Major Exploration Programme	1 June 2018
•	Major Exploration Programme Commences	25 June 2018
•	2018 Exploration Programme Update	16 July 2018
•	Minyari Dome – Initial Drill Results	1 August 2018
•	Thick High-grade Copper Mineralisation Intersected	2 October 2018
•	Chicken Ranch and Minyari Dome Drilling Update	15 November 2018
•	Multiple New Gold-Copper Targets on 100% Owned Ground	23 December 2019
•	Commencement of Drilling Programmes at Minyari Dome Project	2 October 2020
•	Drilling of New Targets Deliver Significant Au Intersections	16 February 2021
•	High-Grade Gold Intersected at Minyari & WACA Deposits	7 April 2021
•	Commencement of Drilling at 100% Owned Minyari Project	13 May 2021
•	AZY: 2021 Exploration Activities Update	17 June 2021

These announcements are available for viewing on the Company's website www.antipaminerals.com.au under the Investors tab and on the ASX website www.asx.com.au.

The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements. Mr Roger Mason, whose details are set out above, was the Competent Person in respect of the Exploration Results in these original reports.

ANTIPAMINERALS

Competent Persons Statement – Mineral Resource Estimations for the Minyari-WACA Deposits, Calibre Deposit, Tim's Dome and Chicken Ranch Deposits, and Magnum Deposit: The information in this document that relates to the estimation and reporting of the Minyari-WACA deposits Mineral Resources is extracted from the report entitled "Minyari/WACA Deposits Maiden Mineral Resources" created on 16 November 2017 with Competent Persons Kahan Cervoj and Susan Havlin, the Calibre deposit Mineral Resource is extracted from the report entitled "Calibre Gold Resource Increases 62% to 2.1 Million Ounces" created on 17 May 2021 with Competent Person Ian Glacken, the Tim's Dome and Chicken Ranch deposits Mineral Resources is extracted from the report entitled "Chicken Ranch and Tims Dome Maiden Mineral Resources" created on 13 May 2019 with Competent Person Shaun Searle, and the Magnum deposit Mineral Resource information is extracted from the report entitled "Calibre and Magnum Deposit Mineral Resource JORC 2012 Updates" created on 23 February 2015 with Competent Person Patrick Adams, all of which are available to view on www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant original market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Gold Metal Equivalent Information - Calibre Mineral Resource Gold Equivalent cut-off grade: Gold Equivalent (Aueq) details of material factors and metal equivalent formula are reported in "Calibre Gold Resource Increases 62% to 2.1 Million Ounces" created on 17 May 2021 which is available to view on www.antipaminerals.com.au and www.asx.com.au.

Gold Metal Equivalent Information - Magnum Mineral Resource Gold Equivalent cut-off grade: Gold Equivalent (Aueq) details of material factors and metal equivalent formula are reported in "Citadel Project - Calibre and Magnum Deposit Mineral Resource JORC 2012 Updates" created on 23 February 2015 which is available to view on www.antipaminerals.com.au and www.asx.com.au.

Mineral Resource Estimates

Minyari Dome Project (100% Antipa)

Deposit and Gold Cut-off Grade*	Resource Category	Tonnes (Mt)	Gold Grade (g/t)	Copper Grade (%)	Silver Grade (g/t)	Cobalt (ppm)	Gold (oz)	Copper (t)	Silver (oz)	Cobalt (t)
Minyari 0.5 Au	Indicated	3.2	1.9	0.3	0.7	590	192,610	9,600	75,660	1,860
Minyari 0.5 Au	Inferred	0.7	1.7	0.24	0.6	340	36,260	1,560	13,510	220
Minyari 0.5 Au	Sub-Total	3.8	1.9	0.29	0.7	550	228,870	11,160	89,170	2,080
Minyari 1.7 Au	Indicated	.2	2.6	0.29	0.9	430	18,740	650	6,800	100
Minyari 1.7 Au	Inferred	3.7	2.6	0.3	1.0	370	303,000	10,950	117,550	1,360
Minyari 1.7 Au	Sub-Total	3.9	2.6	0.3	1.0	380	321,740	11,600	124,350	1,460
Minyari	Total	7.7	2.2	0.3	0.9	460	550,610	22,760	213,520	3,540
WACA 0.5 Au	Inferred	2.8	1.4	0.11	0.2	180	121,950	3,120	15,920	500
WACA 1.7 Au	Inferred	0.5	2.9	0.09	0.2	230	50,780	510	3,850	120
WACA	Total	3.3	1.6	0.11	0.2	190	172,730	3,630	19,770	620
Minyari + WACA Deposits	Grand Total	11.0	2.0	0.24	0.7	380	723,340	26,390	233,290	4,160

^{*0.5} Au = Using a 0.5 g/t gold cut-off grade above the 50mRL (NB: potential "Open Cut" cut-off grade) and *1.7 Au = Using a 1.7 g/t gold cut-off grade below the 50mRL (NB: potential "Underground" cut-off grade)

Wilki Project (Newcrest Farm-in)

Deposit and Gold Cut-off Grade**	Resource Category	Tonnes (Mt)	Gold Grade (g/t)	Copper Grade (%)	Silver Grade (g/t)	Cobalt (ppm)	Gold (oz)	Copper (t)	Silver (oz)	Cobalt (t)
Chicken Ranch Area 0.5 Au	Inferred	0.8	1.6	VT		-	40,300	1573		
Tim's Dome 0.5 Au	Inferred	1.8	1.1	-	2	2:	63,200	121	-	æ
Chicken Ranch Area + Tim's Dome	Total	2.4	1.3	15	8	ē	103,500	(2)	170	æ

^{**0.5} Au = Using a 0.5 g/t gold cut-off grade above the 50mRL (NB: potential "Open Cut" cut-off grade)

Citadel Project (Rio Tinto JV)

Deposit and Gold Cut-off Grade***	Resource Category	Tonnes (Mt)	Gold Equiv (g/t)	Gold Grade (g/t)	Copper Grade (%)	Silver Grade (g/t)	Gold Equiv (Moz)	Gold (Moz)	Copper (t)	Silver (Moz)
Calibre 0.5 Au Equiv	Inferred	92	0.92	0.72	0.11	0.46	2.7	2.1	104,000	1.3
Magnum 0.5 Au Equiv	Inferred	16	-	0.70	0.37	1.00	5 + 11	0.34	58,000	0.5
Calibre + Magnum Deposits	Total	108	s	0.72	0.15	0.54	2.7	2.4	162,000	1.8

^{***0.5} AuEquiv = Refer to details provided by the Notes section

Note: Citadel Project Mineral Resources are tabled on a 100% basis, with Antipa's current joint venture interest being 35%

Note: Wilki Project Mineral Resources are tabled on a 100% basis, with Antipa's current joint venture interest being 100%

Table 2a: Minyari Dome Project Drill Hole Intersections: Gold-Copper-Silver-Cobalt (i.e. ≥ 1.0m with Au ≥ 0.40 g/t)

Hole ID	Area	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)	Silver (g/t)	Cobalt (ppm)
21MYC0198	Minyari	179.0	181.0	2.0	0.41	0.06	0.13	529
21MYC0199	Minyari	0.0	2.0	2.0	0.41	0.01	0.11	9
21MYC0199	Minyari	44.0	45.0	1.0	0.42	0.01	0.04	31
21MYC0199	Minyari	110.0	113.0	3.0	0.41	0.00	0.03	400
21MYC0199	Minyari	123.0	153.0	30.0	0.66	0.08	0.17	563
	including	123.0	125.0	2.0	2.90	0.41	0.74	2,593
	Including	131.0	132.0 147.0	1.0	2.09	0.24	0.41	438
	Including Including	145.0 151.0	153.0	2.0 2.0	2.67 1.54	0.18 0.13	0.73 0.18	1,735 1,800
21MYC0199	Minyari	180.0	192.0	12.0	0.85	0.15	0.18	249
211111111111111111111111111111111111111	Including	180.0	183.0	3.0	1.87	0.15	0.96	372
	Including	190.0	192.0	2.0	1.74	0.13	0.44	647
21MYC0199	Minyari	217.0	234.0	17.0	1.36	0.07	0.09	80
	Including	217.0	220.0	3.0	4.58	0.13	0.11	166
	Including	227.0	229.0	2.0	2.91	0.13	0.19	103
21MYC0199	Minyari	258.0	267.0	9.0	0.66	0.06	0.13	50
	Including	258.0	259.0	1.0	2.37	0.06	0.11	54
	Including	265.0	267.0	2.0	1.08	0.07	0.12	80
21MYC0199	Minyari	295.0	296.0	1.0	0.40	0.02	0.10	12
21MYC0199	Minyari	305.0	306.0	1.0	0.74	0.05	0.08	26
21MYC0199	Minyari	328.0	329.0	1.0	1.95	0.17	0.51	54
21MYC0200	Minyari	26.0	27.0	1.0	0.46	0.03	0.04	35
21MYC0200	Minyari	35.0	36.0	1.0	0.74	0.02	0.29	32
21MYC0200	Minyari	48.0	49.0	1.0	0.57	0.04	0.03	51
21MYC0200	Minyari	75.0	76.0	1.0	0.28	1.53	1.44	342
21MYC0200	Minyari	82.0	83.0	1.0	0.41	0.03	0.03	114
21MYC0200	Minyari	99.0	101.0	2.0	0.42	0.06	0.08	91
21MYC0200	Minyari	113.0	114.0	1.0	0.52	0.56	1.27	320
21MYC0200	Minyari	135.0	137.0	2.0	0.65	0.30	0.67	188
21MYC0200	Minyari	142.0	144.0	2.0	0.63	0.40	0.97	157
21MYC0200	Minyari	149.0	153.0	4.0	6.49	0.26	0.66	1,083
	Including	151.0	152.0	1.0	19.05	0.42	1.37	3,120
21MYC0200	Minyari	169.0	170.0	1.0	6.65	0.09	21.60	58
21MYC0200	Minyari	266.0	267.0	1.0	2.74	0.16	0.84	90
21MYC0200	Minyari	274.0	275.0	1.0	0.68	0.19	0.44	58
21MYC0200	Minyari	294.0	316.0	22.0	2.60	0.08	0.17	38
	Including	294.0	295.0	1.0	42.30	0.16	1.03	47
	Including	295.0	296.0	1.0	3.81	0.05	0.11	21
	Including	301.0	302.0	1.0	3.43	0.83	1.08	101
21MYC0200	Minyari	316.0	319.0	3.0	0.42	0.07	0.16	41
21MYC0200	Minyari	331.0	334.0	3.0	0.67	0.25	0.56	79
21MYC0200	Minyari	355.0	356.0	1.0	0.53	0.08	0.19	81
21MYC0200	Minyari	356.0	380.0	24.0	1.42	0.17	0.49	65
	Including	359.0	360.0	1.0	11.60	1.64	3.26	334
	Including	371.0	373.0	2.0	3.33	0.20	0.19	51
21MYC0200	Including	379.0 380.0	380.0 381.0	1.0	5.35	0.45	2.40	151 36
21MYC0200 21MYC0200	Minyari Minyari	380.0 393.0	381.0 394.0	1.0 1.0	0.66 0.72	0.08 0.56	0.19 0.85	108
21MYC0200 21MYC0200	Minyari	393.0 394.0	400.0	6.0	2.18	0.56	0.85	764
211411 (0200	Including	394.0	396.0	2.0	3.26	0.23	1.36	329
	Including	399.0	400.0	1.0	5.28	0.42	0.72	1,825
21MYC0201	Minyari	136.0	192.0	56.0	1.20	0.42	1.08	289
	including	136.0	138.0	2.0	9.35	5.22	12.35	1,113
	also incl.	137.0	138.0	1.0	15.35	5.40	13.70	1,210
	including	146.0	147.0	1.0	2.21	0.48	1.76	704
	including	156.0	160.0	4.0	2.88	0.80	2.54	471
	including	168.0	170.0	2.0	4.83	1.02	2.56	780
	including	183.0	184.0	1.0	3.24	0.51	1.48	283
	including	190.0	191.0	1.0	2.34	0.13	0.32	625
21MYC0201	Minyari	195.0	196.0	1.0	0.42	0.04	0.11	99
21MYC0201	Minyari	199.0	200.0	1.0	0.46	0.09	0.20	153
21MYC0201	Minyari	201.0	202.0	1.0	0.52	0.04	0.12	107
21MYC0201	Minyari	206.0	207.0	1.0	0.65	0.10	0.12	114
	Minyari	271.0	274.0	3.0	0.49	0.24	0.36	86
21MYC0201	iviiiiyaii	2/1.0	2/4.0					
21MYC0201 21MYC0201	Minyari	281.0	284.0	3.0	0.79	0.41	0.60	78

Hole ID	Area	From (m)	To (m)	Interval	Gold	Copper	Silver	Cobalt
21MYC0201	Minuori	294.0	297.0	(m) 3.0	(g/t) 2.59	(%) 0.39	(g/t) 0.96	(ppm) 174
21101110201	Minyari Including	294.0	297.0	1.0	6.31	0.39	1.69	222
21MYC0202	Minyari	19.0	29.0	10.0	0.96	0.12	0.12	498
	Including	19.0	21.0	2.0	3.44	0.30	0.03	1,772
21MYC0203	Minyari	24.0	29.0	5.0	0.45	0.08	0.11	366
21MYC0203	Minyari	39.0	45.0	6.0	0.61	0.12	0.11	340
	Including	39.0	40.0	1.0	1.84	0.27	0.15	707
21MYC0203	Minyari	61.0	73.0	12.0	1.09	0.25	0.67	1,089
	Including	66.0	67.0	1.0	8.41	0.90	2.56	487
21MYC0203	Minyari	91.0	92.0	1.0	0.42	0.13	0.31	252
21MYC0203	Minyari	100.0	101.0	1.0	0.97	0.05	0.05	46
21MYC0204	Minyari	2.0	3.0	1.0	0.65	0.01	0.22	9
21MYC0204	Minyari	28.0	29.0	1.0	0.60	0.11	0.17	130
21MYC0204 21MYC0204	Minyari Minyari	43.0 60.0	44.0 61.0	1.0 1.0	0.60 1.76	0.06 0.08	0.12 0.15	87 169
21MYC0204	Minyari	72.0	74.0	2.0	0.82	0.05	0.13	619
21MYC0204	Minyari	119.0	120.0	1.0	0.82	0.09	0.14	1,260
21MYC0204	Minyari	122.0	160.0	38.0	1.71	0.05	0.15	655
	including	122.0	123.0	1.0	2.62	0.01	0.05	4,580
	including	132.0	138.0	6.0	3.31	0.05	0.10	1,379
	Also Incl.	132.0	133.0	1.0	5.61	0.04	0.08	4,410
	Also Incl.	135.0	136.0	1.0	8.09	0.07	0.12	1,055
	including	140.0	142.0	2.0	10.16	0.01	0.09	1,348
	Also Incl.	141.0	142.0	1.0	16.35	0.02	0.09	1,695
	including	157.0	159.0	2.0	7.02	0.30	1.05	494
	Also Incl.	158.0	159.0	1.0	11.45	0.47	1.68	703
21MYC0204	Minyari	183.0	184.0	1.0	0.89	0.20	0.41	224
21MYC0204	Minyari	184.0	194.0	10.0	1.87	0.41	0.95	624
	Including	184.0	186.0	2.0	5.44	0.80	1.98	886
21MYC0204	Including	191.0	193.0 195.0	2.0 1.0	2.72 0.52	0.68	1.56 0.25	1,312 697
21MYC0204	Minyari Minyari	194.0 200.0	201.0	1.0	0.52	0.11 0.03	0.23	672
21MYC0204	Minyari	206.0	201.0	3.0	0.38	0.03	0.02	656
211111 60204	including	206.0	207.0	1.0	1.32	0.11	0.20	1,165
21MYC0204	Minyari	219.0	220.0	1.0	1.01	0.02	0.08	154
21MYC0204	Minyari	228.0	229.0	1.0	0.64	0.03	0.03	261
21MYC0204	Minyari	249.0	250.0	1.0	5.71	0.18	0.22	188
21MYC0205	Minyari	0.0	1.0	1.0	1.02	0.01	0.19	7
21MYC0205	Minyari	39.0	40.0	1.0	0.61	0.15	0.11	273
21MYC0205	Minyari	54.0	56.0	2.0	0.90	0.27	0.85	203
21MYC0205	Minyari	83.0	84.0	1.0	1.72	0.43	1.08	642
21MYC0205	Minyari Co	84.0	85.0	1.0	0.15	0.04	0.06	423
21MYC0205	Minyari	98.0	99.0	1.0	1.13	0.23	0.35	56
21MYC0205	Minyari	112.0	141.0	29.0	1.19	0.72	1.43	212
21MYC0205	Including Minyari	112.0 141.0	113.0 142.0	1.0 1.0	0.41 0.51	1.88 0.07	3.58 0.15	211 127
21MYC0205 21MYC0205	Minyari	202.0	203.0	1.0	0.51	0.07	0.15	645
21MYC0205	Minyari	202.0	238.0	1.0	0.52	0.08	0.15	66
21MYC0205	Minyari	242.0	245.0	3.0	1.33	0.09	0.19	331
	Including	242.0	243.0	1.0	2.33	0.03	0.13	155
21MYC0205	Minyari	327.0	328.0	1.0	1.67	0.14	0.22	21
21MYC0205	Minyari	354.0	355.0	1.0	0.42	0.07	0.05	61
21MYC0205	Minyari	382.0	383.0	1.0	0.53	0.05	0.09	46
21MYC0205	Minyari	383.0	414.0	31.0	3.20	0.26	0.57	101
	Including	385.0	386.0	1.0	6.22	0.80	3.51	75
	including	390.0	392.0	2.0	17.54	1.40	2.19	408
	Also Incl.	391.0	392.0	1.0	32.10	2.29	3.83	598
	Including	397.0	399.0	2.0	18.80	0.82	2.30	266
24141/2225=	Also Incl.	398.0	399.0	1.0	33.00	0.80	3.56	310
21MYC0207	Minyari	24.0	39.0	15.0	0.69	0.21	0.26	439
	Including	27.0	33.0	6.0	1.11	0.20	0.26	610
21MYC0207	Including	38.0 70.0	39.0	1.0	1.73	0.12	0.48	170 788
ZIIVI I CUZU/	Minyari Including	7 0.0 70.0	189.0 72.0	119.0 2.0	0.86 1.58	0.08 0.35	0.15 1.05	788 77
	Including	70.0 92.0	102.0	10.0	2.21	0.35	0.43	1,831
	Also Incl.	100.0	102.0	2.0	7.58	0.24	1.48	2,700
	, 1130 111011		104.0	1.0	1.35	0.31	0.31	685
	Including	103.0	104.0					
	Including Including	103.0 119.0						
	Including Including Including	103.0 119.0 121.0	120.0 122.0	1.0	1.24 1.51	0.03	0.05 0.07	6,790
	Including	119.0	120.0	1.0	1.24		0.05	

Hole ID	Area	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)	Silver (g/t)	Cobalt (ppm)
	Including	159.0	161.0	2.0	1.29	0.21	0.46	911
	Including	166.0	168.0	2.0	5.43	0.21	0.48	467
	Including	172.0	174.0	2.0	6.90	0.20	0.48	9,370
	Including	185.0	186.0	1.0	1.31	0.17	0.33	564
	Including	188.0	189.0	1.0	5.49	0.23	0.70	268
21MYC0207	Minyari	191.0	192.0	1.0	0.68	0.06	0.10	149
21MYC0207	Minyari	215.0	216.0	1.0	0.43	0.04	0.04	75
21MYC0208	Minyari	0.0	2.0	2.0	0.57	0.01	0.27	10
21MYC0208	Minyari	90.0	91.0	1.0	0.49	0.32	0.88	177
21MYC0208	Minyari	100.0	121.0	21.0	3.58	0.64	1.66	251
	Including	101.0	109.0	8.0	4.86	1.27	3.01	300
	also incl.	101.0	102.0	1.0	1.53	3.34	6.22	547
	also incl.	102.0	103.0	1.0	20.60	2.85	8.25	589
	also incl.	106.0	107.0	1.0	2.43	1.51	3.17	354
	also incl.	108.0	109.0	1.0	8.66	0.87	2.66	187
	including	114.0	115.0	1.0	5.21	1.25	3.55	492
	including	119.0	120.0	1.0	17.70	0.88	3.85	529
21MYC0208	Minyari	133.0	134.0	1.0	1.15	0.20	0.28	144
21MYC0208	Minyari	142.0	144.0	2.0	0.60	0.00	0.01	29
21MYC0208	Minyari	170.0	171.0	1.0	0.40	0.00	0.00	1,040
21MYC0208	Minyari	209.0	210.0	1.0	0.41	0.00	0.02	31
21MYC0208	Minyari	234.0	237.0	3.0	0.45	0.09	0.16	35
21MYC0208	Minyari	243.0	244.0	1.0	0.58	0.16	0.20	36
21MYC0208	Minyari	255.0	256.0	1.0	0.65	0.18	0.32	58
21MYC0208	Minyari	264.0	269.0	5.0	1.68	0.31	0.73	94
	Including	265.0	266.0	1.0	2.29	0.78	1.86	164
	Including	267.0	268.0	1.0	4.11	0.28	0.56	65
21MYC0208	Minyari	283.0	284.0	1.0	1.56	0.10	0.21	49
21MYC0208	Minyari	335.0	341.0	6.0	16.83	0.50	0.96	195
	Including	339.0	340.0	1.0	58.90	0.75	1.88	232
21MYC0216	Minyari	223.0	224.0	1.0	0.53	0.03	0.09	193
21MYC0216	Minyari	230.0	233.0	3.0	0.65	0.29	0.94	343
21MYC0216	Minyari	233.0	249.0	16.0	1.25	0.65	1.84	825
	Including	247.0	248.0	1.0	1.42	0.49	1.29	1,300
21MYC0216	Minyari	249.0	250.0	1.0	0.75	0.21	0.53	1,200
21MYC0216 ¹	Minyari	261.0	263.0	2.0	0.84	0.12	0.40	882
NOTES: 1 Partial Hole								

Notes: Table 1 intersections are 1m length-weighted composite assay intervals reported using the following criteria:

Intersection Interval = Nominal cut-off grade scenarios:

- ≥ 0.40ppm (g/t) gold
- ≥ 1,000ppm (0.1%) copper
- ≥ 0.75ppm (g/t) silver
- ≥ 400ppm Cobalt
- No top-cutting has been applied to these length-weighted composite assay intervals.
- Intersections are down hole lengths, true widths not known with certainty, refer to JORC Table 1 Section 2.

Table 2b: Minyari Dome Project Drill Hole Intersections: Gold-Copper-Silver-Cobalt (i.e. \geq 1.0m with Cu \geq 1,000 ppm and/or Ag \geq 1.00 g/t and/or Co \geq 400)

Hole ID	Area	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)	Silver (g/t)	Cobalt (ppm)
21MYC0198	Minyari Cu	16.0	19.0	3.0	0.04	0.10	0.09	282
21MYC0198	Minyari Co	38.0	58.0	20.0	0.17	0.10	0.23	597
	including	50.0	51.0	1.0	0.58	0.45	0.12	1,740
	including	56.0	57.0	1.0	0.57	0.20	0.51	710
21MYC0198	Minyari Co	74.0	100.0	26.0	0.27	0.08	0.15	582
	including	84.0	88.0	4.0	0.81	0.29	0.58	1,091
	including	91.0	92.0	1.0	0.73	0.13	0.28	1,895
21MYC0198	Minyari Co	126.0	128.0	2.0	0.01	0.02	0.04	903
21MYC0198	Minyari Cu	177.0	178.0	1.0	0.21	0.13	0.25	247
21MYC0199	Minyari Co	85.0	86.0	1.0	0.05	0.02	0.11	1,120
21MYC0199	Minyari Co	94.0	95.0	1.0	0.07	0.04	0.09	648
21MYC0199	Minyari Co	106.0	107.0	1.0	0.03	0.07	0.10	723
21MYC0199	Minyari Co	109.0	110.0	1.0	0.09	0.01	0.07	402
21MYC0199	Minyari Co	113.0	114.0	1.0	0.22	0.01	0.03	376
21MYC0199	Minyari Cu	116.0	119.0	3.0	0.12	0.16	0.28	124
21MYC0199	Minyari Co	153.0	156.0	3.0	0.09	0.03	0.04	446
21MYC0199	Minyari Co	177.0	178.0	1.0	0.31	0.12	0.26	461
21MYC0199	Minyari Co	195.0	196.0	1.0	0.03	0.05	0.04	440
21MYC0199	Minyari Cu	212.0	213.0	1.0	0.04	0.13	0.12	279
21MYC0199	Minyari Cu	319.0	320.0	1.0	0.06	0.15	0.21	49
21MYC0200	Minyari Cu	29.0	32.0	3.0	0.04	0.12	0.24	126
21MYC0200	Minyari Co	44.0	45.0	1.0	0.13	0.20	0.14	577
21MYC0200	Minyari Cu	45.0	46.0	1.0	0.13	0.12	0.16	242
21MYC0200	Minyari Co	79.0	81.0	2.0	0.07	0.02	0.01	534
21MYC0200	Minyari Cu	105.0	113.0	8.0	0.16	0.19	0.33	122
21MYC0200	Minyari Cu	114.0	116.0	2.0	0.25	0.45	0.87	311
21MYC0200	Minyari Co	230.0	231.0	1.0	0.02	0.02	0.03	441
21MYC0200	Minyari Co	236.0	237.0	1.0	0.06	0.02	0.04	523
21MYC0200	Minyari Cu	251.0	252.0	1.0	0.13	0.12	0.28	71
21MYC0200	Minyari Cu	259.0	261.0	2.0	0.26	0.15	0.35	34
21MYC0201	Minyari Cu	25.0	26.0	1.0	0.03	0.11	0.12	67
21MYC0201	Minyari Co	27.0	30.0	3.0	0.11	0.06	0.11	416
21MYC0201	Minyari Co	87.0	114.0	27.0	0.19	0.10	0.13	504
	Including	88.0	94.0	6.0	0.53	0.33	0.42	780
	Including	112.0	113.0	1.0	0.67	0.01	0.04	739
21MYC0201	Minyari Co	127.0	128.0	1.0	0.00	0.07	0.10	583
21MYC0201	Minyari Cu	193.0	194.0	1.0	0.33	0.11	0.17	160
21MYC0201	Minyari Cu	277.0	278.0	1.0	0.20	0.11	0.16	77
21MYC0201	Minyari Cu	285.0	287.0	2.0	0.18	0.19	0.27	97
21MYC0201	Minyari Cu	297.0	299.0	2.0	0.25	0.13	0.27	90
21MYC0202	Minyari Co	18.0	19.0	1.0	0.13	0.22	0.01	1,010
21MYC0202	Minyari Co	34.0	37.0	3.0	0.13	0.09	0.07	446
21MYC0203	Minyari Ag	57.0	58.0	1.0	0.04	0.03	0.94	33
21MYC0203	Minyari Co	60.0	61.0	1.0	0.09	0.08	0.22	422
21MYC0203	Minyari Co	83.0	86.0	3.0	0.27	0.03	0.07	732
21MYC0203	Minyari Cu	102.0	105.0	3.0	0.02	0.12	0.12	70
21MYC0203	Minyari Cu	109.0	111.0	2.0	0.10	0.13	0.35	175
21MYC0203	Minyari Co	112.0	114.0	2.0	0.18	0.01	0.17	604
21MYC0203	Minyari Co	119.0	120.0	1.0	0.17	0.01	0.06	447
21MYC0203	Minyari Co	134.0	145.0	11.0	0.17	0.04	0.06	409
	Including	144.0	145.0	1.0	1.40	0.07	0.09	320
21MYC0203	Minyari Cu	169.0	170.0	1.0	0.16	0.18	0.40	305
21MYC0204	Minyari Cu	18.0	25.0	7.0	0.07	0.26	0.05	131
21MYC0204	Minyari Co	25.0	26.0	1.0	0.11	0.24	0.04	908
21MYC0204	Minyari Cu	29.0	30.0	1.0	0.33	0.13	0.15	91
21MYC0204	Minyari Cu	31.0	39.0	8.0	0.16	0.13	0.16	139
21MYC0204	Minyari Cu	54.0	57.0	3.0	0.05	0.24	0.28	74
21MYC0204	Minyari Co	74.0	75.0	1.0	0.28	0.08	0.07	465
21MYC0204	Minyari Cu	83.0	85.0	2.0	0.14	0.20	0.39	131
21MYC0204	Minyari Co	102.0	104.0	2.0	0.12	0.02	0.03	2,063
21MYC0204	Minyari Co	110.0	111.0	1.0	0.42	0.07	0.21	1,365
21MYC0204	Minyari Co	74.0	75.0	1.0	0.28	0.08	0.07	465
21MYC0204	Minyari Cu	161.0	162.0	1.0	0.24	0.15	0.36	67
21MYC0204	Minyari Cu	165.0	166.0	1.0	0.30	0.17	0.45	95
21MYC0204	Minyari Co	166.0	178.0	12.0	0.17	0.10	0.19	411
21MYC0204	Minyari Cu	179.0	181.0	2.0	0.14	0.20	0.41	217
	Minyari Cu	161.0	162.0	1.0	0.24	0.15	0.36	67

Hole ID	Area	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (%)	Silver (g/t)	Cobalt (ppm)
21MYC0204	Minyari Co	195.0	196.0	1.0	0.14	0.02	0.03	525
21MYC0204	Minyari Co	203.0	204.0	1.0	0.11	0.04	0.06	690
21MYC0204	Minyari Co	225.0	227.0	2.0	0.09	0.01	0.03	1,600
21MYC0205	Minyari Co	19.0	30.0	11.0	0.11	0.15	0.09	755
21MYC0205	Minyari Cu	40.0	41.0	1.0	0.07	0.10	0.05	241
21MYC0205	Minyari Cu	50.0	51.0	1.0	0.04	0.14	0.36	201
21MYC0205	Minyari Co	51.0	54.0	3.0	0.29	0.56	0.27	598
21MYC0205	Minyari Cu	58.0	60.0	2.0	0.04	0.15	0.19	147
21MYC0205	Minyari Cu	62.0	63.0	1.0	0.09	0.15	0.14	219
21MYC0205	Minyari Cu	67.0	71.0	4.0	0.19	0.20	0.29	237
21MYC0205	Minyari Co	84.0	85.0	1.0	0.15	0.04	0.06	423
21MYC0205	Minyari Cu	99.0	100.0	1.0	0.22	0.14	0.18	168
21MYC0205	Minyari Cu	106.0	112.0	6.0	0.07	0.12	0.14	79
21MYC0205	Minyari Cu	144.0	145.0	1.0	0.11	0.14	0.20	120
21MYC0205	Minyari Cu	155.0	156.0	1.0	0.04	0.10	0.15	111
21MYC0205	Minyari Cu	169.0	170.0	1.0	0.04	0.13	0.18	22
21MYC0205	Minyari Co	190.0	193.0	3.0	0.04	0.03	0.03	973
21MYC0205	Minyari Co	209.0	211.0	2.0	0.15	0.05	0.06	417
21MYC0205	Minyari Cu	329.0	330.0	1.0	0.10	0.23	0.32	31
21MYC0205	Minyari Cu	349.0	350.0	1.0	0.15	0.13	0.13	53
21MYC0205	Minyari Cu	353.0	354.0	1.0	0.04	0.14	0.10	94
21MYC0207	Minyari Cu	17.0	24.0	7.0	0.12	0.44	0.09	109
21MYC0207	Minyari Cu	39.0	41.0	2.0	0.22	0.14	0.36	256
21MYC0207	Minyari Co	201.0	202.0	1.0	0.14	0.02	0.01	412
21MYC0208	Minyari Cu	19.0	43.0	24.0	0.04	0.11	0.15	128
21MYC0208	Minyari Cu	60.0	68.0	8.0	0.11	0.13	0.24	179
21MYC0208	Minyari Cu	76.0	77.0	1.0	0.17	0.12	0.34	53
21MYC0208	Minyari Co	168.0	169.0	1.0	0.29	0.01	0.01	573
21MYC0208	Minyari Co	172.0	173.0	1.0	0.08	0.01	0.01	577
21MYC0208	Minyari Co	183.0	184.0	1.0	0.05	0.03	0.02	535
21MYC0208	Minyari Co	187.0	189.0	2.0	0.24	0.12	0.23	724
21MYC0208	Minyari Cu	226.0	227.0	1.0	0.07	0.15	0.27	43
21MYC0208	Minyari Cu	254.0	255.0	1.0	0.16	0.22	0.48	80
21MYC0208	Minyari Cu	263.0	264.0	1.0	0.38	0.47	0.46	82
21MYC0208	Minyari Cu	269.0	270.0	1.0	0.26	0.10	0.12	60
21MYC0216	Minyari Ag	64.0	68.0	4.0	0.20	0.01	1.92	23
21MYC0216	Minyari Cu	224.0	225.0	1.0	0.28	0.10	0.41	161
21MYC0216	Minyari Co	228.0	230.0	2.0	0.21	0.06	0.18	579
21MYC0216	Minyari Co	250.0	252.0	2.0	0.17	0.04	0.09	735
21MYC0216	Minyari Co	258.0	260.0	2.0	0.09	0.04	0.13	409
21MYC0216	Minyari Cu	260.0	261.0	1.0	0.14	0.13	0.33	288

Notes: Table 1b intersections are 1m length-weighted composite assay intervals reported using the following criteria:

Intersection Interval = Nominal cut-off grade scenarios:

- ≥ 0.40ppm (g/t) gold
- ≥ 1,000ppm (0.1%) copper
- ≥ 0.75ppm (g/t) silver
- ≥ 400ppm Cobalt
- No top-cutting has been applied to these length-weighted composite assay intervals.
- Intersections are down hole lengths, true widths not known with certainty, refer to JORC Table 1 Section 2.

Table 3: Minyari Dome Project - 2021 Drill Hole Collar Locations (MGA Zone 51/GDA 20)

Hole ID	Deposit	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
21MYC0198	Minyari	RC	7635458	423001	278	204	60	-58	Received
21MYC0199	Minyari	RC	7635428	422964	278	336	60	-58	Received
21MYC0200	Minyari	RC	7635403	422923	279	402	60	-58	Received
21MYC0201	Minyari	RC	7635374	422883	278	300	60	-58	Received
21MYC0202	Minyari	RC	7635489	423060	280	102	60	-58	Received
21MYC0203	Minyari	RC	7635401	423003	279	180	60	-58	Received
21MYC0204	Minyari	RC	7635373	422963	278	282	60	-58	Received
21MYC0205	Minyari	RC	7635351	422927	279	414	60	-58	Received
21MYC0206	Minyari	RC	7635366	423047	278	150	60	-58	Pending
21MYC0207	Minyari	RC	7635335	422997	279	294	60	-58	Received
21MYC0208	Minyari	RC	7635308	422942	278	354	60	-58	Received
21MYC0209	Minyari	RC	7635277	422910	279	216	60	-58	Pending
21MYC0210	Minyari	RC	7635329	423082	279	120	60	-58	Pending
21MYC0211	Minyari	RC	7635263	423074	279	120	60	-58	Pending
21MYC0212	Minyari	RC	7635463	423072	278	150	60	-58	Pending
21MYC0213	Minyari	RC	7635446	422944	278	432	58	-54	Pending
21MYC0214	Minyari	RC	7635399	422863	279	456	58	-55	Pending
21MYC0215	Minyari	RC	7635249	422863	279	416	58	-60	Pending
21MYC0216	Minyari	RC	7635344	422782	278	402	58	-55	Partially Received
21MYC0217	Minyari	RC	7635299	423033	279	204	58	-60	Pending
21MYC0218	Minyari	RC	7635272	422996	278	366	58	-60	Pending
21MYC0219	Minyari	RC	7635243	422955	279	402	58	-60	Pending
21MYC0220	Minyari	RC	7635368	422907	278	444	58	-60	Pending
21MYC0221	Minyari	RC	7635310	422934	278	432	58	-60	Pending
21MYC0222	Minyari	RC	7635434	423013	279	348	58	-60	Pending
21MYC0223	Minyari	RC	7635316	423027	280	180	58	-60	Pending
21MYC0224	Minyari	RC	7635245	422914	278	432	58	-59	Pending
21MYC0225	Minyari	RC	7635365	423098	278	132	58	-60	Pending
21MYC0226	Minyari	RC	7635225	422974	279	432	58	-60	Pending
21MYC0227	Minyari	RC	7635240	423035	279	210	58	-55	Pending
21MYC0228	Minyari	RC	7635212	422989	279	300	58	-55	Pending
21MYC0229	Minyari	RC	7635185	422949	279	390	58	-55	Pending
21MYC0230	Minyari	RC	7635397	423054	270	432	58	-60	Pending
21MYD0500A	Minyari	DD	7635243	422710	276	819	57	-57	Pending
21MYD0505	WACA	DD	7634555	422545	279	636	58	-52	Pending
21MYRCBH2	Water	RC	7635105	422523	261	72	-	-90	Pending
21MYRCBH3	Bores	RC	7635279	422914	264	66	_	-90	Pending

Notes: Drill Hole Collar Table:

 Refer to JORC Table 1 Section 1 for full drill hole information; including drill technique, sampling, and analytical details.

MINYARI DOME PROJECT – 2021 Minyari and WACA Reverse Circulation Drill Hole Sampling

Section 1 – Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 2021 Phase 1 Reverse Circulation (RC) Minyari Deposit: The Minyari deposit has been sampled by 33 Reverse Circulation (RC) drill holes out of 42 planned RC holes, totaling 1,034m with an average maximum drill hole depth of 317m. Assay results have been received for 10 full RC drill holes, and partial results have been received for one other RC hole. The nominal drill hole spacing is across several east-west local grid sections spaced 50m apart with an average drill hole spacing on each section of 50m. To date in 2021 three 25m infill sections have been completed with average drill spacing of 50m on section. Drill hole locations for all RC holes are tabulated in the body of this report. RC Sampling: RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. RC samples were drilled using a 140mm diameter face sampling hammer and sampled on intervals of 1.0m. Two 1m samples were collected as a split from the rig mounted cone splitter and are on average 3kg in weight. The samples were pulverised at the laboratory to produce material for assay. Composite samples of 4m intervals were taken in known unmineralised regions. Samples were taken via combining "Spear" samples of the unmineralised sample intervals to generate a 2-3 kg sample which was pulverised at the laboratory to produce material for assay.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 A total of 33 RC drill holes were drilled totaling 1,034m with average maximum drill hole depth of 317m. All drill holes were completed using 140mm RC face sampling hammer drill bit from surface to total drill hole depths of between 100m to 450m. Drill holes were predominantly angled towards local grid east (058° Magnetic) and at an inclination angle of between -55° to -60° to "optimally" intersect the mineralisation zones.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC sample recovery was recorded via visual estimation of sample volume. RC sample recovery typically ranges from 90 to 100%, with only very occasional samples with less than 70% recovery. RC sample recovery was maximized by endeavoring to maintain a dry drilling conditions as much as practicable; the majority of RC samples were dry. All samples were split on a 1m interval using a rig-mounted cone splitter. Adjustments were made to ensure representative 2 to 3kg sample volumes were collected. Relationships between recovery and grade are not evident and are not expected given the generally

Criteria	JORC Code explanation	Commentary
		excellent and consistently high sample recovery.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging of all RC sample intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining and sulphides. Logging includes both qualitative and quantitative components. Logging was completed for 100% of all holes drilled. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master Access SQL database. All RC sample intervals were measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC samples for all drill holes were drilled using a 140mm diameter face sampling hammer and split on intervals of 1.0m using a rig mounted cone splitter from which two 3 kg (average) samples were collected. The majority of the samples were dry. Composite samples of 4m intervals were taken in known unmineralised regions. Samples were taken via combining "Spear" samples of the unmineralised sample intervals to generate a 2-3 kg sample which was pulverised at the laboratory to produce material for assay. Sample preparation was carried out at ALS using industry standard crush and/or pulverizing techniques. Preparation includes over drying and pulverizing of the entire sample using Essa LM5 grinding mill to a grid size of 85% passing 75 µm. Field duplicate samples were collected for all RC drill holes. The sample sizes are considered appropriate for the style of mineralisation at Minyari.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 All samples were submitted to ALS in Perth for preparation and analysis. All samples were dried, crushed, pulverised and split to produce a sub–sample of 25g which is digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acids ("four acid digest"). This digest is considered to approach a total dissolution for most minerals. Analytical analysis is performed using a combination of ICP-AES and ICP-MS. (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Ti, Tl, V, W and Zn). A lead collection fire assay on a 50g sample with Atomic Absorption Spectroscopy undertaken to determine gold content with a detection limit of 0.005ppm. Additional ore-grade analysis was performed as required for other elements reporting out of range. Field QC procedures involve the use of commercial certified reference material (CRM's) for assay standards and blanks. Standards are inserted every 25 samples. The grade of the inserted standard is not revealed to the laboratory. Field duplicates/repeat QC samples was utilised during the RC drilling programme with nominally 1 in 30 duplicate samples submitted for assaying for each drill hole. Inter laboratory cross-checks analysis programmes have not been conducted at this stage. In addition to Antipa supplied CRM's, ALS includes in each sample batch assayed certified reference

Criteria	JORC Code explanation	Commentary
		materials, blanks and up to 10% replicates.
		If necessary, selected anomalous samples are re-digested and analysed to confirm results.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections of the drilling have been visually verified by the Exploration Manager. There have been no twinned RC holes at this current stage of the drill programme. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master SQL database. No adjustments or calibrations have been made to any assay data collected.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 km = kilometre; m = metre; mm = millimetre. Drill hole collar locations are surveyed using a handheld Garmin 64S GPS which has an accuracy of ± 3m. The drilling co-ordinates are all in GDA20 MGA Zone 51 co-ordinates. The Company has adopted and referenced one specific local grid across the Minyari Dome region ("Minyari" Local Grid) which is defined below. References in the text and the Minyari deposit diagrams are all in this specific Minyari Local Grid. Minyari Local Grid 2-Point Transformation Data: Minyari Local Grid 47,400m east is 421,462.154m east in GDA94 / MGA Zone 51; Minyari Local Grid 47,400m east is 414,078.609m east in GDA94 / MGA Zone 51; Minyari Local Grid 113,000m north is 7,642,356.108m north in GDA94 / MGA Zone 51; Minyari Local Grid North (360°) is equal to 330° in GDA94 / MGA Zone 51; Minyari Local Grid elevation is equal to GDA20 / MGA Zone 51. The topographic surface has been defaulted to 277m RL. Rig orientation was checked using Suunto Sighting Compass from two directions. Drill hole inclination was set by the driller using a clinometer on the drill mast and checked by the geologist prior the drilling commencing. The topographic surface has been compiled using the drill hole collar coordinates. Surveys were completed upon hole completion using a Reflex Gyro downhole survey instrument. Down hole single shots were completed on select holes. Downhole surveys were checked by the supervising geologist for consistency. If required, readings were re-surveyed or smoothed in the database if unreliable azimuth readings were apparent. Survey details included drill hole dip (±0.25° accuracy) and drill hole azimuth (±0.35 accuracy*), Total Magnetic field and temperature.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity 	 The nominal drill hole spacing is east-west 'Minyari grid' sections spaced approximately 50m apart with an 50m average drill hole spacing on each section. To date in 2021 three 25m infill sections have been completed with average drill spacing of 50m.

Criteria	JORC Code explanation	Commentary
	 appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The section spacing is sufficient to establish the degree of geological and grade continuity necessary to support Mineral Resource estimations. No sample compositing has been applied for the reporting of results. All samples reported are collected as 1m intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The location and orientation of the Minyari RC drilling is appropriate given the strike, dip and morphology of the mineralisation. Minyari deposit holes are angled towards local grid east to be perpendicular to the strike of both the dominant mineralisation trend, and at a suitable angle to the dip of the dominant mineralisation. No consistent and/or material sampling bias resulting from a structural orientation has been identified at Minyari at this stage; however, both folding and multiple vein directions have been recorded via surface mapping, diamond drilling and RC drilling.
Sample security	The measures taken to ensure sample security.	 Chain of sample custody is managed by Antipa to ensure appropriate levels of sample security. Samples are stored on site and delivered by Antipa or their representatives to Port Hedland and subsequently by Toll Transport from Port Hedland to the assay laboratory in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling techniques and procedures are regularly reviewed internally, as is the data. Consultants Snowden, during completion of the 2013 Calibre Mineral Resource estimate, undertook a desktop review of the Company's sampling techniques and data management and found them to be consistent with industry standards.

MINYARI DOME PROJECT

Section 2 – Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Minyari and WACA deposit drilling and other exploration data is located wholly within Exploration License E45/3919 (granted). Antipa Minerals Ltd has a 100% interest in E45/3919. A 1% net smelter royalty payable to Paladin Energy on the sale of product on all metals applies to this tenement as a condition of a Split Commodity Agreement with Paladin Energy. E45/3919 is not subject to the Citadel Project Farm-in Agreement with Rio Tinto Exploration Pty Ltd. The tenement is contained completely within land where the Martu People have been determined to hold native title rights. To the Company's knowledge no historical or environmentally sensitive sites have been identified in the area being actively explored. The tenement is in good standing and no known impediments exist.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Minyari and WACA deposits were greenfield discoveries by the Western Mining Corporation Ltd during the early 1980's. Exploration of the Minyari Dome region has involved the following companies: Exploration of the Minyari Dome region has involved the following companies: Western Mining Corporation Ltd (1980 to 1983); Newmont Holdings Pty Ltd (1984 to 1990); MIM Exploration Pty Ltd (1990 to 1991); Newcrest Mining Limited (1991 to 2015); and Antipa Minerals Ltd (2016 onwards).
Geology	Deposit type, geological setting and style of mineralisation.	 The geological setting is Paterson Province Proterozoic aged meta-sediment hosted hydrothermal shear, fault and strata/contact controlled precious and/or base metal mineralisation which is typically sulphide bearing. The mineralisation in the region is interpreted to be granite related. The Paterson is a low grade metamorphic terrane but local hydrothermal alteration and/or contact metamorphic mineral assemblages and styles are indicative of a high-temperature local environment. Mineralisation styles include vein, stockwork, breccia and skarns.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A summary of all available information material to the understanding of the Minyari Dome region exploration results can be found in previous WA DMIRS publicly available reports. All the various technical Minyari Dome region exploration reports are publicly accessible via the DMIRS' online WAMEX system. The specific WAMEX and other reports related to the exploration information the subject of this public disclosure have been referenced in previous public reports.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No weighted average techniques have been used to report results. No top-cuts to gold, copper, silver or cobalt have been applied (unless specified otherwise). A nominal 0.30 g/t gold, 0.10% copper, 0.75 g/t silver and 400ppm cobalt lower cut-off grades have been applied during data aggregation. Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals. Metal equivalence is not used in this report.
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	Minyari Deposit (MGA grid) • The Minyari deposit consists of meta-sediment hosted intrusion related hydrothermal alteration,

Criteria	JORC Code explanation	Commentary
mineralisation widths and intercept lengths	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	breccia and vein style Gold-Copper-Silver-Cobalt mineralisation occurs along a moderate to steep south-west dipping structural corridor striking approximately 320° and moderately plunging towards the northwest.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant results are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. The details of the Minyari Dome region historic Induced Polarisation survey, including IP Chargeability and resistivity anomalies, can be found in WA DMIRS publicly available WAMEX reports A81227 (2008), A86106 (2009) and A89687 (2010). The details of the Company's reprocessing, review and modelling of the Minyari Dome region historic Induced Polarisation survey, including IP Chargeability and resistivity anomalies, can be found in the Company's ASX report titled "Minyari Reprocessed IP Survey Results" created on 5 July 2016. Zones of mineralisation and associated waste material have not been measured for their bulk density; however, Specific Gravity ("Density") measurements continue to be taken from diamond drill core. Multi element assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulfur, lead, zinc and magnesium. Downhole "logging" of a selection of Minyari deposit RC drillholes (i.e. 33 drill holes totaling 2,341m) was undertaken as part of the 2016 Phase 1 programme using an OBI40 Optical Televiewer which generated an oriented 360 degree image of the drill hole wall via a CCD camera recorded digital image. The OBI40 system utilised also included a North Seeking Gyro-scope to measure drill hole location/deviation, and the downhole survey also measured rock density, magnetic susceptibility, natural gamma and included a borehole caliper device for measuring drill hole diameter. The combined dataset collected via the OBI40 Optical Televiewer downhole survey data has multiple geological and geotechnical uses, including but not limited to the detection and determination of insitu lithological, structural and mineralisation feature orientations (i.e. dip and strike), determination and orientation of fracture frequency, general ground conditions/stabil

Criteria	JORC Code explanation	Commentary
		 No information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material were obtained from the WAMEX reports. No metallurgical test-work results are currently available for the Minyari Dome deposits; however, the Company has been collecting sample material from the Phase 1 and Phase 2 drilling programmes for metallurgical test-work planned to be completed during 2017. In addition, the following information in relation to metallurgy was obtained from WA DMIRS WAMEX reports: Newmont Holdings Pty Ltd collected two bulk (8 tonnes each) metallurgical samples of oxide mineralisation in 1987 (i.e. WAMEX 1987 report A24464) from a 220m long costean across the Minyari deposit. The bulk samples were 8 tonnes grading 1.5 g/t gold and 8 tonnes grading 3.57 g/t gold from below shallow cover in the costean. However, it would appear the Newmont metallurgical test-work for these two bulk samples was never undertaken/competed as no results were subsequently reported to the WA DMIRS; Newmont Holdings Pty Ltd also collected drill hole metallurgical samples for Minyari deposit oxide and primary mineralisation (i.e. WAMEX 1986 report A19770); however, subsequent reporting of any results to the WA DMIRS could not be located suggesting that the metallurgical test-work was never undertaken/competed. Newcrest Mining Ltd describe the Minyari deposit gold-copper mineralisation as being typical of the Telfer gold-copper mineralisation. In 2004 and 2005 (WAMEX reports A71875 and A74417) Newcrest commenced metallurgical studies for the Telfer Mine and due to the similarities with the Minyari mineralisation a portion of this Telfer metallurgical test-work expenditure was apportioned to the then Newcrest Minyari tenements. Whilst Telfer metallurgical results are not publicly available, the Telfer Mining operation (including ore processing facility) was materially expanded in the mid-2000's
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Gold-copper-silver-cobalt mineralisation identified by the Company's 2021 drill programme the Minyari deposit has been intersected over a range of drill defined limits along strike, across strike and down dip and variously remains open in multiple directions with both deposits requiring further investigation/drilling to test for lateral and vertical mineralisation extensions and continuity beyond the limits of existing drilling limits. All appropriate maps and sections (with scales) and tabulations of intercepts are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.