

MINYARI DOME PROJECT PHASE 2 CY2023 EXPLORATION DRILLING COMPLETE

Antipa Minerals Ltd (**ASX: AZY**) (**Antipa** or the **Company**) is pleased to provide an update on Phase 2 CY2023 exploration drilling at its 100%-owned Minyari Dome Gold-Copper Project in the Paterson Province of Western Australia (Figures 13 and 14). **A continued pipeline of assay results are expected over the coming months** and set to be incorporated into planning for the upcoming Phase 3 reverse circulation (RC) and diamond core drilling programme scheduled for March 2024.

Highlights

- Phase 2 CY2023 Minyari Dome Exploration Programme complete, consisting of more than 11,200m of RC, diamond core and air core drilling.
- Two diamond core holes for 762m and 25 RC holes for 4,024m complete at the GEO-01 prospect, with notable intersections returned, including:
 - 62m at 0.8 g/t gold from 94m down hole in 23MYC0422, including:
 - 1m at 2.1 g/t gold from 97m
 - 18m at 1.3 g/t gold from 119m, also including:
 - 6m at 1.8 g/t gold from 120m
 - **1m at 1.8 g/t gold** from 130m; and
 - **1m at 3.1 g/t gold** from 135m
 - **70m at 0.64 g/t gold** and 0.03% copper from 16m down hole in 23MYC0421, including:
 - **22m at 1.3 g/t gold** and 0.05% copper from 16m, also including:
 - **8m at 2.0 g/t gold** and 0.04% copper from 20m; and
 - **1m at 3.0 g/t gold** and 0.14% copper from 36m
 - **2m at 1.3 g/t gold** and 0.03% copper from 47m
 - 2m at 1.8 g/t gold and 0.05% copper from 73m
 - 8m at 2.2 g/t gold from 136m down hole in 23MYC0424
 - **2m at 5.6 g/t gold** from 142m
- Initial 873m diamond core hole at Tetris complete, testing a bulls-eye shaped partially coincident magnetic-gravity high geophysical signature Assays pending.
- **Expanded regional Air core drilling programme complete**, consisting of 150 drill holes and 5,589m covering a broad area surrounding GEO-01 **Assays pending.**
- Preparation for follow-up drilling at the GEO-01 gold discovery and maiden drilling at three high-potential Pacman targets is well advanced.

Antipa's Managing Director, Roger Mason commented

"We are delighted with the initial assays returned from our recently completed Phase 2 CY2023 exploration drilling programme at Minyari Dome.

Results from this round of drilling at the GEO-01 discovery continue to demonstrate multiple notable zones of high-grade gold, and with mineralisation open in most directions, it is quickly firming up as a significant potential maiden resource opportunity.

With results outstanding from diamond drilling at Tetris and assays pending from the expanded regional air core programme around GEO-01 we have lots to look forward to in the new year."

Phase 2 CY2023 Minyari Dome Project Exploration Programme

The CY2023 Phase 2 exploration drilling programme at the Minyari Dome Project is now complete, encompassing a total of 178 holes and 11,248m of RC, diamond core and air core drilling.

GEO-01: Further significant near-surface high-grade gold mineralisation was intersected at GEO-01 (Table 1 and Figures 1 to 6). Multiple zones of mineralisation remain open across the broader 600m by 370m prospect footprint which is located just 1.3km from the 1.5 Moz Minyari gold-copper deposit, offering a substantial shallow potential resource opportunity (Figures 1 and 2).

In Phase 2 drilling at GEO-01, two EIS co-funded diamond core drill holes for a total of 762m and 25 RC drill holes for a total of 4,024m were completed (Tables 2 and 3). Assays have been returned for 26 of the 27 drill holes, with results for the second diamond core drill hole expected in February 2024. Additional substantial air core evaluation of the broader GEO-01 target area was also undertaken as part of the Phase 2 programme (Table 3 and Figure 7).

Key GEO-01 outcomes:

- Gold mineralisation defines an approximately annular, 350 to 400m diameter feature, which may relate to mapped folding approximately 700m to the NE (Figure 2). Axial planar parallel faults and other structures including lithological contacts act as conduits for gold bearing fluids preferentially into folded, competent (hard/brittle), meta-psammitic (quartzite) and mafic intrusive (dolerite) host lithologies.
- The thickest and highest-grade zone of gold mineralisation is hosted along a NNE to ENE trending corridor, 180 to 250m in length and 50 to 150m in width, along the northern region of GEO-01 (Figures 2 to 6).
- Multiple zones of gold mineralisation remain open, with large areas of GEO-01 to be tested for strike and depth extensions to mineralisation during the upcoming Phase 3 drill programme.
- Based on gold mineralisation orientation information obtained from the first diamond core drill hole the drill direction for a portion of the Phase 2 programme was rotated by approximately 70°. The drill direction will be optimised for different zones of GEO-01 mineralisation during the Phase 3 programme.

Evaluation of the broader Minyari Dome area for additional GEO-01 analogue targets has commenced, with key targeting criteria including the intersection of NNE to ENE trending structures with competent/brittle lithologies including mafic intrusives. This targeting process has already resulted in the identification of new high priority targets for drill testing in 2024.

Expanded region Air Core programme: The expanded Phase 2 air core drill programme consisted of 150 drill holes for 5,589m which increased the systematic coverage to a 1.6km² area surrounding GEO-01 and extending to within 300m of the Minyari deposit (Table 3 and Figure 7). In addition, several geochemical and/or geophysical anomalies within 1.3km to 12km from Minyari received air core coverage. Assay results from this programme are expected to be returned February 2024.

Tetris: Located 35km north-east of the Minyari deposit, the Tetris target bears significant geophysical likeness to the Havieron gold-copper deposit (LSE: **GGP**) (Figure 8). This includes a similar bulls-eye shaped, sized and amplitude partially coincident magnetic-gravity high geophysical signature. The initial Tetris 873m diamond core hole (**23TSD0001**) intersected the Proterozoic basement beneath 450m of Phanerozoic cover (Figure 9). Diamond core drill testing of this greenfield target was supported by a A\$220,000 Western Australian Government EIS co-funding drilling grant. Assay results are expected to be returned February 2024.

Key Tetris outcomes:

- The 450m thick cover confirmed the model depth and was comfortably drilled, with the unconformity (base of cover) not presenting as an aquifer.
- The Proterozoic basement was dominated by metasedimentary lithologies (meta-psammite, meta-pelite and meta-carbonates) hosting variable zones of possible mineral system related signatures (Figures 10a-b, 11a-c and 12), including:
 - Quartz-calcite±clinopyroxene veining and minor brecciation (10cm to 3m thick);
 - Hydrothermal alteration dominated by albite±biotite±chlorite±sericite (10cm to 20m thick);
 - Associated variable disseminated, blebby, veinlet and minor breccia, pyrite and pyrrhotite.
- Only 5% of the basement was granitic intrusions.
- Mafic intrusives (dolerite or gabbro), which could potentially explain the magnetic anomaly, were not present.
- Drill hole 23TSD0001 only traversed approximately 150 horizontal metres of the basement, representing just 12% of the 1,200 horizontal metre Tetris magnetic anomaly footprint.
- It is unlikely that the Tetris magnetic high anomaly has been satisfactorily explained by the observed quantities of the magnetic mineral pyrrhotite, and a very large proportion of the anomaly remains untested; however, geophysical 3D inversion modelling will be undertaken.

Any further Tetris drilling will be contingent on the assay results, geophysical modelling, and completion of an integrated interpretation, including structural analysis.

Upcoming Phase 3 CY2024 Minyari Dome Exploration Programme

Results from Phase 2 drilling, in particular GEO-01, will inform the depth and direction of a planned 11,000m Phase 3 RC (6,000m) and diamond core (5,000m) drilling programme scheduled to commence in March 2024.

This programme will include completion of EIS drilling at the three Pacman greenfield targets, PM1, PM2 and PM3. Diamond core drill testing of all three large-scale greenfield targets is supported by A\$660,000 of further Western Australian Government EIS co-funding drilling grants.

The CY2024 Minyari Dome Project exploration programmes and budgets are subject to ongoing review based on results, field conditions, contractor availability and pricing, and other relevant matters.

Release authorised by

Roger Mason Managing Director

For further information, please visit or contact:

Roger Mason Managing Director Antipa Minerals Ltd +61 (0)8 9481 1103

Mark Rodda Executive Director Antipa Minerals Ltd +61 (0)8 9481 1103

Michael Vaughan Media Relations Fivemark Partners +61 (0)422 602 720

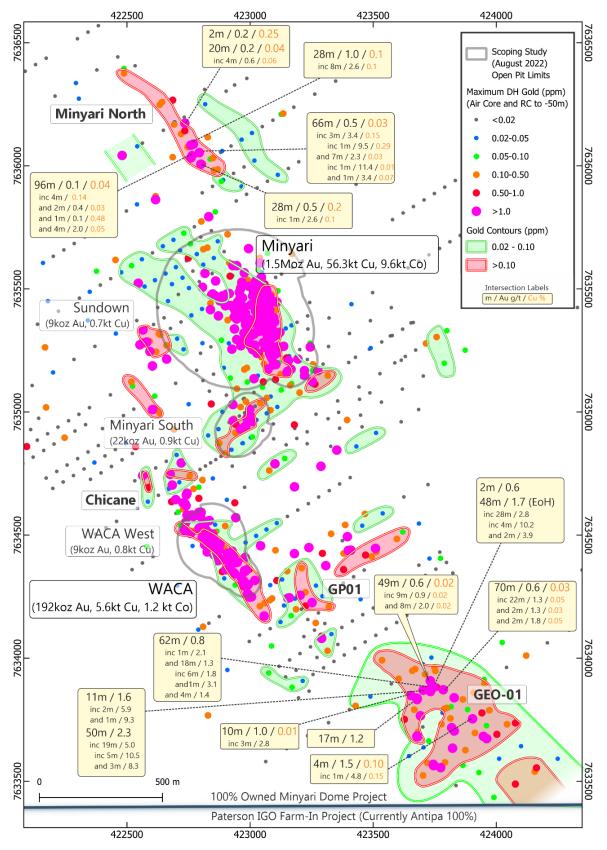


Figure 1: Map showing the Minyari Dome resource locations, Scoping Study open pit limits, prospect locations for GEO-01, Minyari North, GP01 and Chicane, and contoured maximum down-hole gold drill results. Note the large scale of the GEO-01 gold deposit, similar in size of the flagship Minyari deposit, and remains open in several directions, identifying a substantial near surface potential maiden resource opportunity. NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 500m grid.

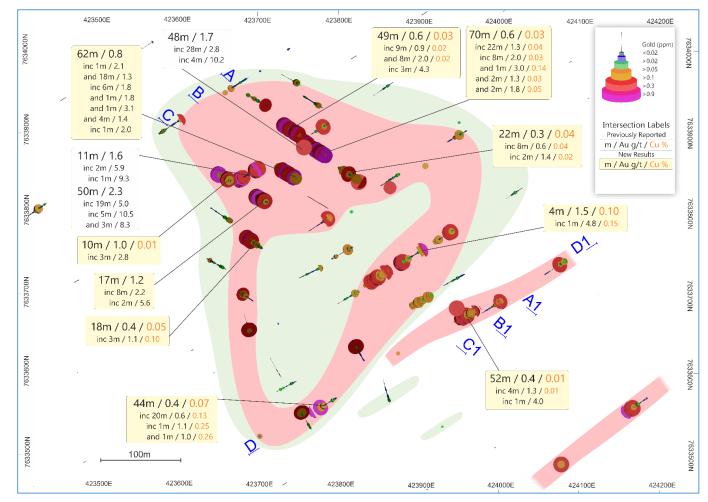


Figure 2: GEO-01 deposit flitch plan 50m below surface (i.e. 230mRL with ± 25m data window) showing gold ± copper drill results. Mineralisation defines an approximately annular, 350 to 400m diameter feature, which may be related to folding. Folded hard/brittle quartzite and mafic intrusives are preferentially mineralised. The thickest and highest-grade zone of gold mineralisation is on a NNE to ENE trending corridor, 180 to 250m in length and 50 to 150m in width, along the northern region of GEO-01. Multiple zones of mineralisation remain open, with large areas of GEO-01 to be tested for strike and depth extensions to mineralisation. NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 100m grid.

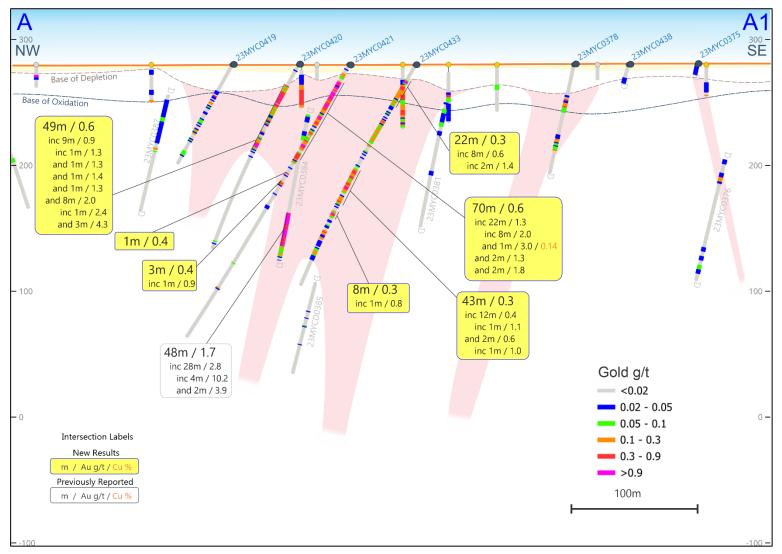


Figure 3: GEO-01 deposit NW-SE cross-section A-A' (refer to Figure 2 for location) showing gold±copper drill intercepts, with the deposit open down dip and along strike for multiple zones of mineralisation. NB: 100m elevation (RL), looking toward 035° GDA2020 / MGA Zone 51 Grid.

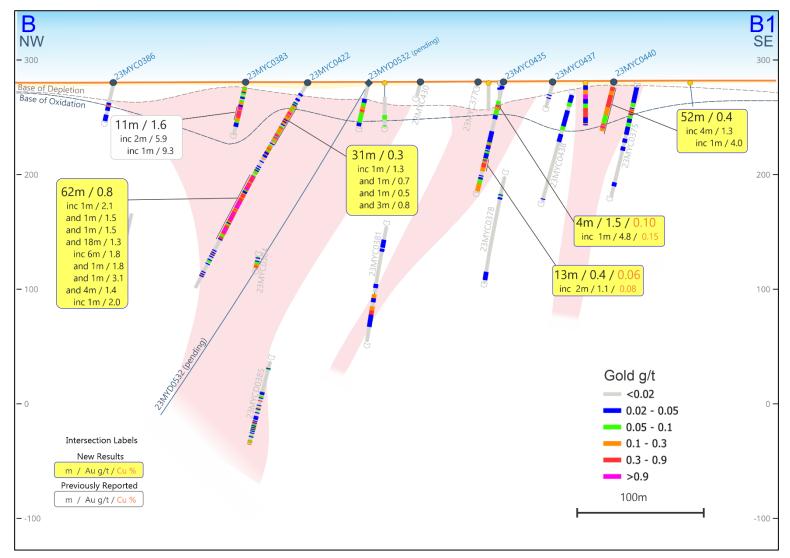


Figure 4: GEO-01 deposit NW-SE cross-section B-B' (refer to Figure 2 for location) showing gold±copper drill intercepts, with the deposit open down dip and along strike for multiple zones of mineralisation. NB: 100m elevation (RL), looking toward 035° GDA2020 / MGA Zone 51 Grid.

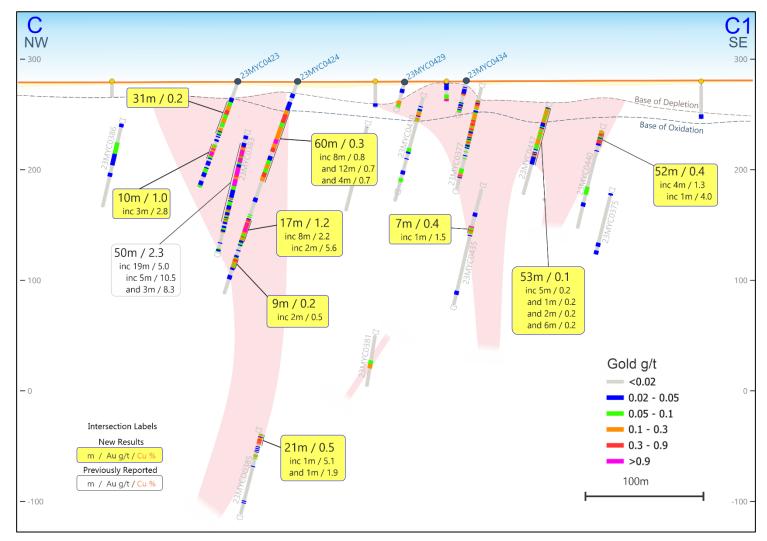


Figure 5: GEO-01 deposit NW-SE cross-section C-C' (refer to Figure 2 for location) showing gold±copper drill intercepts, with the deposit open down dip and along strike for multiple zones of mineralisation. NB: 100m elevation (RL), looking toward 035° GDA2020 / MGA Zone 51 Grid.

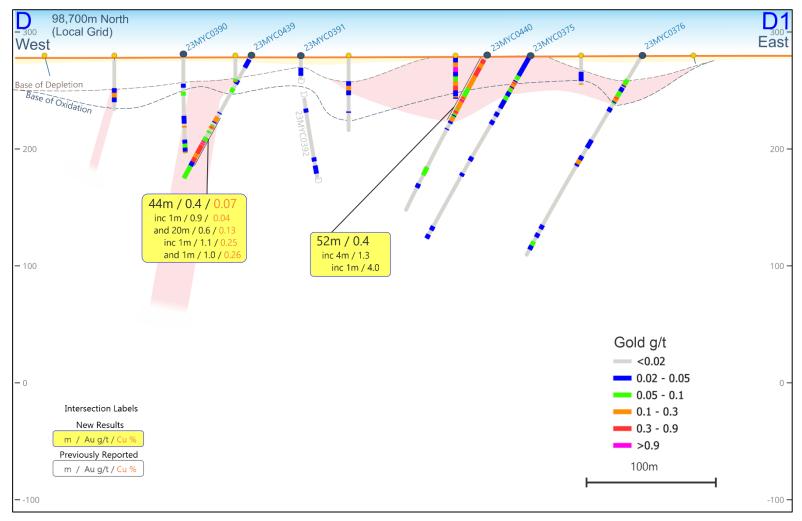


Figure 6: GEO-01 deposit cross-section 98,700mN Local Grid (refer to Figure 2 for D-D' location) showing gold±copper drill intercepts, with the deposit open down dip and along strike for multiple zones of mineralisation. Note that drill holes may be sub-parallel to these southern zones of mineralisation, lode orientation will be evaluated during the upcoming Phase 3 drill programme providing potential to increase the continuity and volume of higher-grade gold mineralisation. NB: 100m elevation (RL), looking toward 328° GDA2020 / MGA Zone 51 Grid (or Local Grid 360°).

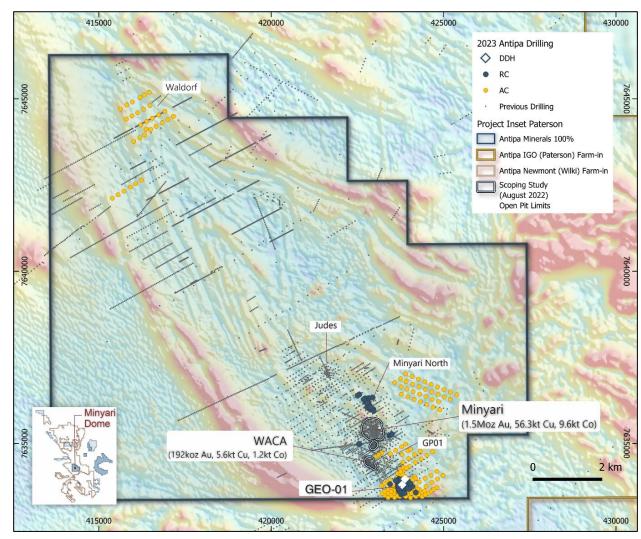


Figure 7: Plan of the Minyari Dome area showing the resource locations, Scoping Study open pit limits and location of the Phase 2 RC, diamond core and air core drill holes. Note the expanded Phase 2 air core drill programme with 150 holes increasing the systematic coverage surrounding GEO-01 to a 1.6km² area extending to within 300m of the Minyari deposit. NB: Over Airborne magnetic image; TMI-RTP 1VD pseudo-colour NESUN and Regional GDA2020 / MGA Zone 51 co-ordinates.

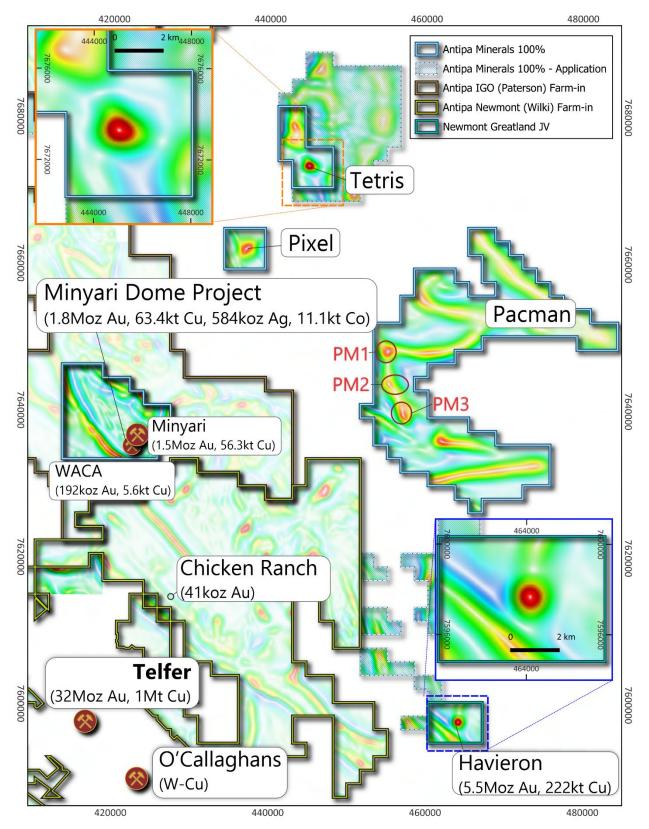


Figure 8: Plan showing 100% owned Minyari Dome Project (and partial region of Wilki Project) aeromagnetics highlighting comparison of the bulls-eye magnetic high anomalies for the 5.5Moz gold and 222kt copper Havieron deposit and the Tetris target. Both Havieron and Tetris also have partially coincident gravity high anomalies. Also note the Pacman and Pixel target magnetic high areas, with PM2 and PM3 including partially coincident gravity high anomalies (not shown). NB: Over Airborne magnetic image and Regional GDA2020 / MGA Zone 51 co-ordinates, 20km grid (2 x insets with 4km grid and scale bars).

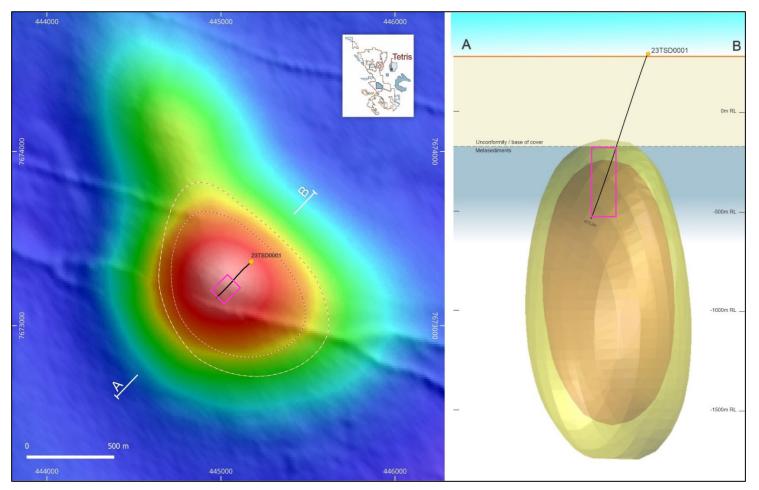


Figure 9: Tetris target images showing the 450m (476.1m downhole) thick cover which confirmed the model depth. Drill hole 23TSD0001 only traversed approximately 150 horizontal metres of the Proterozoic basement (within purple boxes), representing just 12% of the 1,200 horizontal metre Tetris magnetic anomaly footprint. Unlikely that the Tetris magnetic high anomaly has been satisfactorily explained by the observed quantities of the magnetic mineral pyrrhotite with a very large proportion of the anomaly remaining untested. Geophysical 3D magnetic inversion modelling will be undertaken. NB: Lefthand Plan panel is over Airborne magnetic image and Righthand Cross-section panel shows (3D) modelled magnetic isosurfaces (yellow "shell" is the 0.004 SI Unit model and the orange "shell" is the 0.005 SI Unit model). Regional GDA2020 / MGA Zone 51 co-ordinates, Plan with 1km grid and Cross-section with 500m grid.

a = Unconformity between 450m thick (Phanerozoic) cover and (Proterozoic) basement at 476.1m downhole, the cover was comfortably drilled. Note quartzcalcite±amphibole veining and brecciation plus hydrothermal alteration dominated by albite-chlorite-sericite, with associated variable disseminated, blebby, veinlet and minor breccia, pyrite and pyrrhotite.

b = Unconformity between Phanerozoic cover and Proterozoic basement at 476.1m downhole, with the unconformity (base of cover) not presenting as an aquifer and the Proterozoic basement very fresh/unoxidized. Note the pyrite "plume" in the Phanerozoic cover immediately above a quartz-pyrite-pyrrhotite veinlet in the basement.

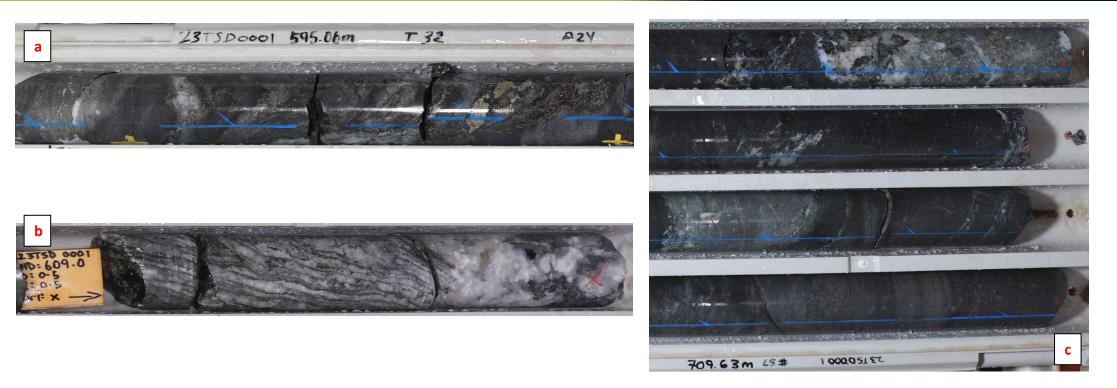


Figure 11a-c: Tetris diamond core drill hole 23TSD0001 photos (NB: NQ core diameter 48mm and hole depths on trays and/or core blocks):

a = Quartz±calcite veining and brecciation plus variable hydrothermal alteration dominated by albite-biotite, with associated variable disseminated, blebby, veinlet and breccia, pyrite and pyrrhotite.

b = Early ribbon textured quartz-biotite vein cross-cut by younger quartz±calcite-pyrite-pyrrhotite vein/breccia.

c = Quartz±calcite-clinopyroxene veining and brecciation plus hydrothermal alteration dominated by albite-clinopyroxene, with associated variable disseminated, blebby, veinlet and minor breccia, pyrite and pyrrhotite.

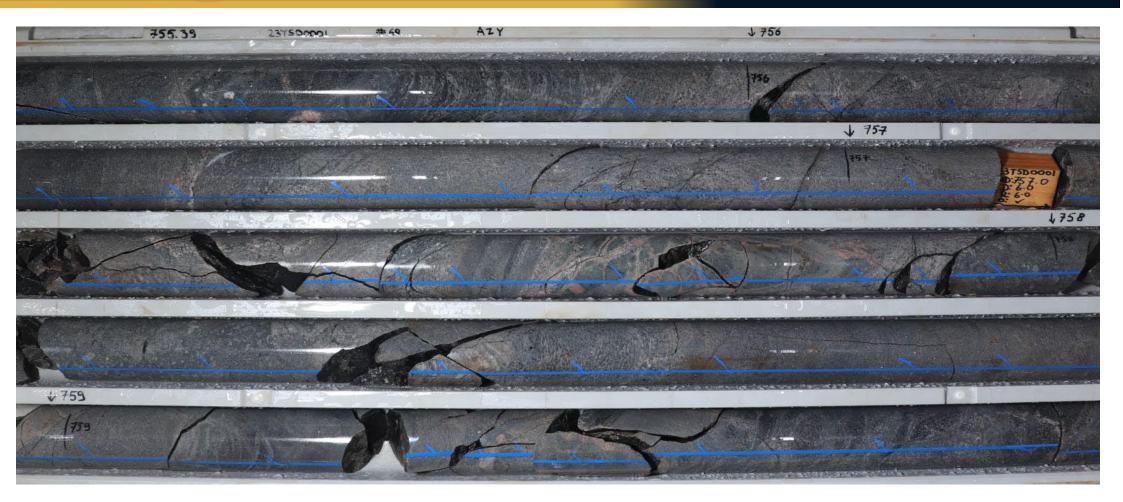


Figure 12: Tetris diamond core drill hole 23TSD0001 photos (NB: NQ core diameter 48mm and hole depths on trays and/or core blocks):

Several zones of fracture-breccia with hydrothermal "bleaching" alteration dominated by albite (some pink haematite stained/dusted?) and minor associated pyrite and pyrrhotite.

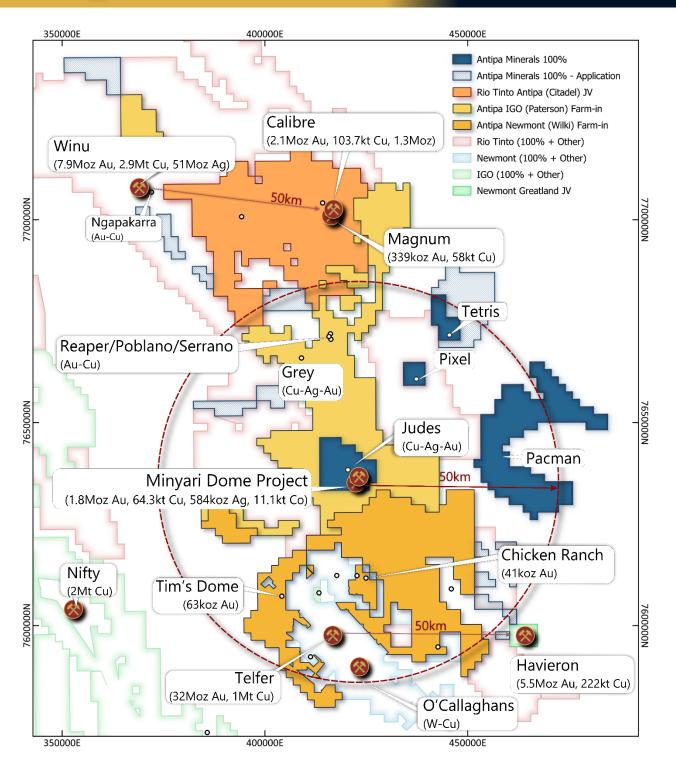


Figure 13: Plan showing location of Antipa 100% owned tenements including the Tetris and Pacman target locations, Rio Tinto-Antipa Citadel Joint Venture Project, including the Calibre and Magnum resources. Also shows Antipa-Newmont Wilki Farm-in, Antipa-IGO Paterson Farm-in, Newmont Corporation's Telfer Mine and O'Callaghans deposit, Rio Tinto's Winu deposit, Newmont-Greatland Gold's Havieron deposit and Cyprium's Nifty Mine.

NB: Rio and IGO tenement areas include related third-party Farm-ins/Joint Ventures. NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 50km grid.

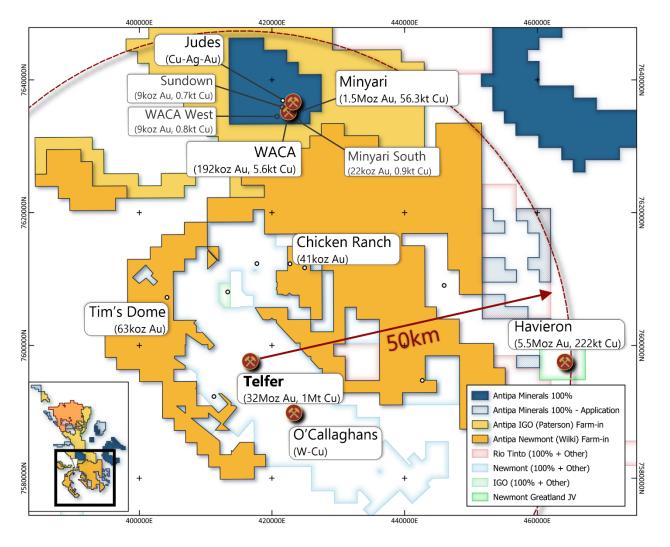
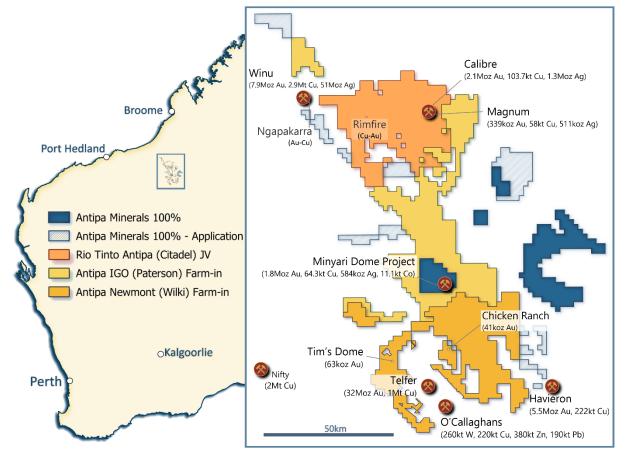


Figure 14: Plan showing location of the southern portion of Antipa's 100% owned Paterson Province tenements. Also shows the Antipa-Newmont Wilki Farm-in, a portion of the Antipa-IGO Paterson Farm-in, Newmont Corporation's Telfer Mine and O'Callaghans deposit and Newmont-Greatland Gold's Havieron deposit. NB: Rio and IGO tenement areas include related third-party Farm-ins/Joint Ventures. NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 20km grid.

About Antipa Minerals: Antipa Minerals Ltd (ASX: **AZY**) (**Antipa** or the **Company**) is a leading mineral exploration company with a strong track record of success in discovering world-class gold-copper deposits in the highly prospective Paterson Province of Western Australia. The Company's exploration and advancement programme is focused on identifying and unlocking the full potential of the region, which offers significant opportunities for profitable mining operations.


The Company's granted tenement holding covers over 5,100km² in a region that is home to Newmont's world-class Telfer mine and some of the world's more recent large gold-copper discoveries including Rio Tinto's Winu and Newmont-Greatland Gold's Havieron.

Exploration success has led to the discovery of several major mineral deposits on Antipa's ground, including the wholly owned, flagship 900km² Minyari Dome Gold-Copper Project. Minyari Dome currently hosts a 1.8 Moz gold resource (at 1.6 g/t) which was the subject of a Scoping Study (August 2022) indicating the potential for a sizeable initial development with further substantial upside.

Antipa is pursuing an aggressive drilling programme this year, targeting substantial and rapid growth to the existing goldcopper resources at Minyari Dome, delivering strong further value enhancement to the existing development opportunity, and making new significant gold-copper discoveries.

The 900km² Minyari Dome Project is complemented by three large-scale growth projects covering a total of 4,200km² which have attracted major listed miners to agree multi-million-dollar farm-in and joint venture (**JV**) arrangements:

- Citadel Project (33% Antipa): Rio Tinto JV over 1,200km²
- Wilki Project (100% Antipa): Newmont farming-in 1,470km²
- Paterson Project (100% Antipa): IGO farming-in 1,550km²

Forward-Looking Statements: This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Antipa Mineral Ltd's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward-looking statements. Although Antipa Minerals Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Table: Minyari Dome Project May 2022 Mineral Resource Estimate

Deposit	Au cut-	Category	Tonnes	Au grade	0	Ag grade	Co	Au	Cu	Ag	Co
	off		(Mt)	(g/t)	(%)	(g/t)	(%)	(oz)	(t)	(oz)	(t)
Minyari	0.5 Au	Indicated	15.00	1.17	0.19	0.54	0.04	567,000	27,800	259,600	5,930
Minyari	0.5 Au	Inferred	2.70	1.12	0.12	0.31	0.02	96,000	3,300	26,300	640
Minyari	1.5 Au	Indicated	4.40	2.30	0.26	0.83	0.03	328,000	11,400	118,400	1,450
Minyari	1.5 Au	Inferred	6.20	2.61	0.22	0.66	0.03	523,000	13,800	132,700	1,590
Total Minyari			28.30	1.66	0.20	0.59	0.03	1,514,000	56,300	537,000	9,610
WACA	0.5 Au	Indicated	1.69	0.97	0.11	0.17	0.02	52,000	1,900	9,400	310
WACA	0.5 Au	Inferred	1.54	1.02	0.12	0.18	0.02	51,000	1,800	9,100	300
WACA	1.5 Au	Inferred	1.63	1.69	0.11	0.17	0.03	89,000	1,900	9,000	560
Total WACA			4.86	1.23	0.11	0.18	0.02	192,000	5,600	27,500	1,170
Minyari South	0.5 Au	Inferred	0.15	4.51	0.56	1.04	0.05	22,000	900	5,100	80
Total Minyari S	outh		0.15	4.51	0.56	1.04	0.05	22,000	900	5,100	80
Sundown	0.5 Au	Inferred	0.20	1.38	0.36	0.72	0.03	9,000	700	4,700	60
Total Sundown	1		0.20	1.38	0.36	0.72	0.03	9,000	700	4,700	60
WACA West	0.5 Au	Inferred	0.39	0.73	0.17	0.81	0.03	9,000	700	10,200	120
WACA West	1.5 Au	Inferred	0.01	0.86	0.50	0.05	0.01	304	55	17	1
Total WACA We	est		0.40	0.73	0.18	0.79	0.03	9,304	755	10,217	121
Total Minyari I	Dome Proje	ect	33.92	1.60	0.19	0.54	0.03	1,746,304	64,255	584,517	11,041

Notes - Minyari Dome Project Table above:

1. Discrepancies in totals may exist due to rounding.

2. The resource has been reported at cut-off grades above 0.5 g/t and 1.5 g/t gold equivalent (Aueq); the calculation of the metal equivalent is documented below.

3. The 0.5 g/t and 1.5 g/t Aueq cut-off grades assume open pit and underground mining, respectively.

4. The resource is 100% owned by Antipa Minerals.

Table: Citadel Project (Antipa 33% and Rio Tinto 67% JV) May 2021 Mineral Resource Estimate

Citadel Pro	ject (Antipa 33%	b)							
Deposit	Au cut-off	Category	Tonnes (Mt)	Au grade (g/t)	Cu grade (%)	Ag grade (g/t)	Au (Moz)	Cu (t)	Ag (Moz)
Calibre	0.5 Au	Inferred	92	0.72	0.11	0.46	2.10	104,000	1.3
Magnum	0.5 Au	Inferred	16	0.70	0.37	1.00	0.34	58,000	0.5
Total Citade	el Project (100% ba	isis)	108	0.72	0.15	0.54	2.44	162,000	1.8

Notes - Citadel Project Table above:

- 1. The resource has been reported at cut-off grades above 0.5 g/t and 0.8 g/t gold equivalent (Aueq); the calculation of the metal equivalent is documented below.
- 2. Both the 0.5 g/t and 0.8 g/t Aueq cut-offs assume large scale open pit mining.
- The resource tonnages tabled are on a 100% basis, with Antipa's current joint venture interest being approximately 33%.
 Small discrepancies may occur due to the effects of rounding.

Table: Wilki Project (Antipa 100%) May 2019 Mineral Resource Estimate

Wilki Project (1	100%)				
Deposit	Au cut-off	Category	Tonnes (Mt)	Au grade (g/t)	Au (oz)
Chicken Ranch	0.5 Au	Inferred	0.8	1.6	40,300
Tims Dome	0.5 Au	Inferred	1.8	1.1	63,200
Total Wilki Projec	ct		2.4	1.3	103,500

Notes - Wilki Project Table above:

1. Small discrepancies may occur due to the effects of rounding.

2. Wilki Project Mineral Resources are tabled on a 100% basis, with Antipa's current interest being 100%.

Competent Persons Statement – Exploration Results: The information in this document that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Roger Mason, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Mason is a full-time employee of the Company. Mr Mason is the Managing Director of Antipa Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Mason has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements, all of which are available to view on www.antipaminerals.com.au and www.asx.com.au. Mr Mason, whose details are set out above, was the Competent Person in respect of the Exploration Results in these original market announcements.

Competent Persons Statement - Mineral Resource Estimations for the Minyari Dome Project Deposits, Calibre Deposit, Magnum Deposit and Chicken Ranch Area Deposits and Tim's Dome Deposit: The information in this document that relates to relates to the estimation and reporting of the Minyari Dome Project deposits Mineral Resources is extracted from the report entitled "Minyari Dome Project Gold Resource Increases 250% to 1.8 Moz" created on 2 May 2022 with Competent Persons Ian Glacken, Jane Levett, Susan Havlin and Victoria Lawns, the Tim's Dome and Chicken Ranch deposits Mineral Resources is extracted from the report entitled "Chicken Ranch and Tims Dome Maiden Mineral Resources" created on 13 May 2019 with Competent Person Shaun Searle, the Calibre deposit Mineral Resource information is extracted from the report entitled "Calibre Gold Resource Increases 62% to 2.1 Million Ounces" created on 17 May 2021 with Competent Person Ian Glacken, and the Magnum deposit Mineral Resource information is extracted from the report entitled "Calibre and Magnum Deposit Mineral Resource JORC 2012 Updates" created on 23 February 2015 with Competent Person Patrick Adams, all of which are available to view on www.antipaminerals.com.au and www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant original market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

The information in this document that relates to the **Scoping Study for the Minyari Dome Project** is extracted from the report entitled "Strong Minyari Dome Scoping Study Outcomes" reported on 31 August 2022 which was compiled by Competent Person Roger Mason, which is available to view on <u>www.antipaminerals.com.au</u> and <u>www.asx.com.au</u>. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the study in the relevant original market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Gold Metal Equivalent Calculations

Gold Metal Equivalent Information – Minyari Dome Project Mineral Resource Gold Equivalent reporting cut-off grade:

The 0.5 g/t and 1.5 g/t Aueq cut-off grades assume open pit and underground mining, respectively.

A gold equivalent grade (**Aueq**) has been calculated from individual gold, copper, silver and cobalt grades. This equivalent grade has been calculated and declared in accordance with Clause 50 of the JORC Code (2012), using the following parameters:

- The metal prices used for the calculation are as follows:
 - US\$ 1,944 per oz gold
 - US\$ 4.74 per lb copper
 - US\$ 25.19 per oz silver
 - US\$ 77,380 per tonne cobalt
- An exchange rate (A\$:US\$) of 0.7301 was assumed
- Metallurgical recoveries for by-product metals, based upon Antipa test-work in 2017 and 2018, are as follows:
 Copper = 85.0%, Silver = 85%, Cobalt = 68%
- The gold equivalent formula, based upon the above commodity prices, exchange rate and recoveries, is thus:
 Aueq = (Au g/t) + (Ag g/t * 0.011) + (Cu % * 1.42) + (Co % * 8.42)

Gold Metal Equivalent Information - Calibre Mineral Resource Gold Equivalent reporting cut-off grade and Gold Equivalent grade:

A gold equivalent grade (**Aueq**) has been calculated from individual gold, copper and silver grades. This equivalent grade has been calculated and declared in accordance with Paragraph 50 of the JORC Code, using the following parameters:

- The metal prices used for the calculation are as follows:
 - US\$ 1,874 /oz gold
 - US\$ 4.50 /lb copper
 - US\$ 25.25 /oz silver
- An exchange rate (A\$:US\$) of 0.722 was assumed.
- Metallurgical recoveries, based upon Antipa test-work in 2014, are as follows:
 - Gold = 84.5%, Copper = 90.0%, Silver = 85.4%
- A factor of 105% (as with the previous estimate) has been applied to the recoveries for gold, copper and silver to accommodate further optimisation of metallurgical performance. Antipa believes that this is appropriate, given the preliminary status of the recovery test-work.
- Tungsten has not been estimated and does not contribute to the equivalent formula.
- The gold equivalent formula, based upon the above commodity prices, exchange rate, recoveries, and using individual metal grades provided by the Citadel Project Mineral Resource Estimate table, is thus:
 - Aueq = Au (g/t) + (1.75*Cu%) + (0.014*Ag g/t)

Gold Metal Equivalent Information - Magnum Mineral Resource Gold Equivalent reporting cut-off grade:

A gold equivalent grade (**Aueq**) has been calculated from individual gold, copper, silver and tungsten grades. This equivalent grade has been calculated and declared in accordance with Paragraph 50 of the JORC Code, using the following parameters:

- The metal prices used for the calculation are as follows:
 - US\$ 1,227 /oz gold
 - US\$ 2.62 /lb copper
 - US\$ 16.97 /oz silver
 - US\$ 28,000 /t WO₃ concentrate
- An exchange rate (A\$:US\$) of 0.778 was assumed.
- Metallurgical recoveries, based upon Antipa test-work in 2014, are as follows:
 - Gold = 84.5%, Copper = 90.0%, Silver = 85.4% and W = 50.0%
- A factor of 105% (as with the previous estimate) has been applied to the recoveries for gold, copper and silver to accommodate further optimisation of metallurgical performance. Antipa believes that this is appropriate, given the preliminary status of the recovery test-work.
- Note that the tungsten recovery of 50% is considered indicative at this preliminary stage based on the initial metallurgical findings.
- Conversion of W% to WO₃% grade requires division of W% by 0.804.
- The gold equivalent formula, based upon the above commodity prices, exchange rate, and recoveries, is thus:
 - Aueq = $(Au (g/t) \times 0.845) + ((\%Cu \times (74.32/50.69) \times 0.90)) + ((Ag (g/t) \times (0.70/50.69) \times 0.854)) + ((\%W/0.804 \times (359.80/50.69) \times 0.50))$

It is the Company's opinion that all the metals included in the metal equivalents calculations above have a reasonable potential to be recovered and sold.

Table 1: Minyari Dome Project - 2023 Phase 2 Exploration Programm	ıe
Drill Hole Intersections - Gold-Copper	

lists ID						
Hole ID	Prospect	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)
23MYC0381	GEO-01	210.0	214.0	4.0	0.27	173
23MYC0381	GEO-01	222.0	230.0	8.0	0.28	250
23MYC0381	GEO-01	286.0	294.0	8.0	0.15	224
23MYC0383	GEO-01	138.0	145.0	7.0	0.15	192
	Including	142.0	143.0	1.0	0.39	667
23MYC0383	GEO-01	149.0	150.0	1.00	0.05	564
23MYC0383	GEO-01	155.0	156.0	1.0	0.20	163
23MYC0383	GEO-01	172.0	197.0	25.0	0.15	171
	Including	181.0	182.0	1.0	0.74	238
	Including	195.0	196.0	1.0	0.97	597
23MYC0383	GEO-01	210.0	211.0	1.00	0.02	654
23MYC0383	GEO-01	215.0	216.0	1.0	0.44	339
23MYC0383	GEO-01	235.0	236.0	1.0	0.01	836
23MYC0418	GEO-01	48.0	60.0	12.0	0.14	171
23MYC0419	GEO-01	27.00	28.00	1.00	0.02	485
23MYC0419	GEO-01	28.0	29.0	1.0	0.34	394
23MYC0419	GEO-01	34.0	36.0	2.0	0.15	69
23MYC0419	GEO-01	59.0	60.0	1.0	0.11	44
	Including	62.0	63.0	1.0	0.11	435
	Including	79.0	86.0	7.0	0.05	473
23MYC0420	GEO-01	19.0	25.0	6.0	0.16	85
23MYC0420	GEO-01	25.0	74.0	49.0	0.60	260
	Including	28.0	37.0	9.0	0.89	148
	Also Incl.	28.0	29.0	1.0	1.28	73
	Also Incl.	31.0	32.0	1.0	1.29	141
	Also Incl.	34.0	35.0	1.0	1.43	218
	Also Incl.	36.0	37.0	1.0	1.25	126
	Including	66.0	74.0	8.0	2.04	200
	Also Incl.	66.0	67.0	1.0	2.43	647
	Also Incl.	71.0	74.0	3.0	4.31	28
23MYC0420	GEO-01	74.0	75.0	1.0	0.22	24
23MYC0421	GEO-01	8.0	16.0	8.0	0.11	352
23MYC0421	GEO-01	16.0	86.0	70.0	0.64	278
	Including	16.0	38.0	22.0	1.30	452
	Also Incl.	20.0	28.0	8.0	2.03	370
	Also Incl.	36.0	37.0	1.0	2.95	1,375
	Including	47.0	49.0	2.0	1.28	279
	Including	73.0	75.0	2.0	1.82	477
3MYC0421	GEO-01	99.0	100.0	1.0	0.41	181
3MYC0421	GEO-01	107.0	110.0	3.0	0.36	65
51111 CO421	Including	108.0	109.0	1.0	0.85	27
	GEO-01	205.0	206.0	1.0	0.26	3,140
23MYC0422	GEO-01	21.0	29.0	8.0	0.13	134
251011 C0422	Including	23.0	24.0	1.0	0.29	127
	GEO-01	29.0	60.0	31.0	0.30	125
	Including	30.0	31.0	1.0	1.28	125
	Including	33.0	34.0	1.0	0.73	95
	Including	45.0	46.0	1.0	0.52	123
	Including	53.0	56.0	3.0	0.52	125
	Also Incl.	53.0	54.0	1.0	1.13	199
	Also Incl.	55.0	56.0	1.0	1.13	176
23MYC0422	GEO-01	64.0	70.0	6.0	0.21	176
23IVIYC0422 23MYC0422	GEO-01 GEO-01	72.0	70.0	1.0	0.21	71
23IVIYC0422 23MYC0422	GEO-01 GEO-01	72.0	73.0	1.0	0.16	71 51
23MYC0422	GEO-01 GEO-01	90.0	91.0	1.0	0.24	164
23IVIYC0422 23MYC0422		90.0 94.0		6 2.0	0.16 0.79	
231111 C0422	GEO-01		156.0		2.13	35 3
	Including	97.0	98.0	1.0		
	Including	101.0	102.0	1.0	1.49	13
	Including	105.0	106.0	1.0	1.50	3
	Including	119.0	137.0	18.0	1.31	17
	Also Incl.	120.0	126.0	6.0	1.77	37
	Also Incl. Also Incl.	120.0 130.0	131.0	1.0	1.76	2
	Also Incl.	120.0				

Hole ID	Prospect	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper
		140.0	140.0			(ppm)
23MYC0422	Also Incl. GEO-01	148.0 170.0	149.0 171.0	1.0 1.0	2.03 0.14	2 195
23MYC0422	GEO-01 GEO-01	170.0	192.0	1.0	0.14	195
23MYC0422	GEO-01 GEO-01	20.0	51.0	31.0	0.24	78
25101100425	Including	24.0	40.0	16.0	0.24	36
	Including	47.0	48.0	1.0	0.24	145
23MYC0423	GEO-01	62.0	72.0	10.0	1.04	118
25111100425	Including	68.0	71.0	3.0	2.76	30
23MYC0423	GEO-01	83.0	84.0	1.0	0.03	459
23MYC0424	GEO-01	28.0	32.0	4.0	0.15	27
23MYC0424	GEO-01	32.0	92.0	60.0	0.34	63
	Including	32.0	40.0	8.0	0.75	26
	Including	56.0	68.0	12.0	0.66	73
	Also Incl.	56.0	60.0	4.0	1.16	52
	Including	88.0	92.0	4.0	0.71	38
23MYC0424	GEO-01	92.0	96.0	4.0	0.13	30
23MYC0424	GEO-01	133.0	150.0	17.0	1.24	62
	Including	136.0	144.0	8.0	2.17	23
	Also Incl.	142.0	144.0	2.0	5.60	26
23MYC0424	GEO-01	151.0	153.0	2.0	0.23	54
23MYC0424	GEO-01	170.0	179.0	9.0	0.21	87
	Including	171.0	173.0	2.0	0.54	35
23MYC0425	GEO-01	36.0	40.0	4.0	0.17	113
23MYC0425	GEO-01	91.0	92.00	1.00	0.01	412
23MYC0426	GEO-01	36.0	48.0	12.0	0.10	248
23MYC0426	GEO-01	92.0	100.0	8.0	0.19	257
23MYC0427	GEO-01	0.00	4.00	4.0	0.12	16
23MYC0427	GEO-01	20.0	40.0	20.0	0.10	118
23MYC0428	GEO-01	52.0	63.0	11.0	0.18	134
23MYC0428	GEO-01	92.0	96.0	4.0	0.10	114
23MYC0428	GEO-01	228.0	232.0	4.0	0.13	89
23MYC0429	GEO-01	20.0	24.0	4.0	0.19	85
23MYC0430	GEO-01	32.0	36.0	4.0	0.12	33
23MYC0430	GEO-01	38.0	42.0	4.0	0.15	57
23MYC0430	GEO-01	70.0	74.0	4.0	0.10	34
23MYC0430	GEO-01	166.0	182.0	16.0	0.12	42
23MYC0430	GEO-01	202.0	210.0	8.0	0.19	86
	Including	206.0	210.0	4.0	0.26	82
23MYC0431	GEO-01	32.0	40.0	8.0	0.08	24
23MYC0431	GEO-01	69.0	71.0	2.0	0.12	19
23MYC0431	GEO-01	108.0	118.0	10.0	0.22	34
	Including	108.0	109.0	1.0	0.64	56
	Including	116.0	117.0	1.0	0.44	48
23MYC0432	GEO-01	28.0	58.0	30.0	0.11	172
23MYC0432	GEO-01	58.0	76.0	18.0	0.35	469
23MYC0432	Including GEO-01	60.0	63.0	3.0	1.11 0.05	919
23MYC0432	GEO-01 GEO-01	77.00 150.0	78.00 151.0	1.00 1.00	0.05	527 19
23MYC0432	GEO-01 GEO-01	155.0	178.0	23.0	0.13	52
201011 00432	Including	155.0 161.0	178.0 170.0	9.0	0.39 0.91	64
23MYC0432	GEO-01	188.0	190.0	2.0	0.18	101
23MYC0432	GEO-01	7.00	9.00	2.0	0.01	1,040
23MYC0433	GEO-01	15.0	37.0	22.0	0.32	372
	Including	15.0	23.0	8.0	0.61	397
	Also Incl.	15.0	17.0	2.0	1.43	204
23MYC0433	GEO-01	39.0	45.	6.0	0.04	486
23MYC0433	GEO-01	49.0	51.0	2.0	0.03	547
23MYC0433	GEO-01	51.0	75.0	24.0	0.15	449
23MYC0433	GEO-01	96.0	139.0	43.0	0.25	362
	Including	102.0	114.0	12.0	0.41	403
	Also Incl.	112.0	113.0	1.0	1.13	639
	Including	134.0	136.0	2.0	0.57	434
	Also Incl.	135.0	136.0	1.0	1.03	696
23MYC0433	GEO-01	150.0	158.0	8.0	0.26	82
	Including	151.0	152.0	1.0	0.82	145
23MYC0433	GEO-01	168.0	172.0	4.0	0.13	143
23MYC0434	GEO-01	13.0	15.0	2.0	0.39	52

						Copper
Hole ID	Prospect	From (m)	To (m)	Interval (m)	Gold (g/t)	(ppm)
23MYC0434	GEO-01	26.0	27.0	1.0	0.12	43
23MYC0434	GEO-01	32.0	34.0	2.0	0.18	88
23MYC0434	GEO-01	90.0	91.0	1.0	0.17	254
23MYC0434	GEO-01	90.0	91.0	1.00	0.17	254
23MYC0435	GEO-01	22.0	26.0	4.0	1.45	957
	Including	22.0	23.0	1.0	4.80	1,445
23MYC0435	GEO-01	69.0	71.0	2.0	0.07	435
23MYC0435	GEO-01	74.0	75.0	1.0	0.03	1,025
23MYC0435	GEO-01	75.0	88.0	13.0	0.40	641
	Including	76.0	78.0	2.0	1.06	794
23MYC0435	GEO-01	96.0	108.0	12.0	0.11	185
23MYC0435	GEO-01	150.0	157.0	7.0	0.39	88
	Including	150.0	151.0	1.0	1.53	138
23MYC0436	GEO-01	92.0	100.0	8.0	0.14	398
23MYC0437	GEO-01	19.0	20.0	1.0	0.01	429
23MYC0437	GEO-01	27.0	80.0	53.0	0.11	140
	Including	32.0	37.0	5.0	0.18	173
	Including	50.0	51.0	1.0	0.21	137
	Including	54.0	56.0	2.0	0.21	108
	Including	61.0	67.0	6.0	0.23	164
23MYC0439	GEO-01	16.0	18.0	2.00	0.01	657
23MYC0439	GEO-01	60.0	104.0	44.0	0.35	691
	Including	70.0	71.00	1.0	0.93	353
	Including	84.0	104.0	20.0	0.63	1,259
	Also Incl.	84.0	85.0	1.0	1.06	2,460
	Also Incl.	86.0	87.0	1.0	1.02	2,630
23MYC0439	GEO-01	112.0	116.0	4.0	0.09	430
23MYC0440	GEO-01	4.00	56.0	52.0	0.41	115
	Including	41.0	45.0	4.0	1.34	102
	Also Incl.	43.0	44.0	1.0	3.97	89
23MYC0440	GEO-01	56.0	57.0	1.0	0.13	43
23MYC0440	GEO-01	60.0	64.0	4.00	0.31	236
23MYC0440	GEO-01	104.0	128.0	24.0	0.04	499
23MYCD0385	GEO-01	333.0	334.0	1.0	0.08	619
23MYCD0385	GEO-01	337.0	338.0	1.0	0.43	515
23MYCD0385	GEO-01	345.0	346.0	1.0	0.19	210
2214/050205	650.04	346.0	348.8	2.8	0.04	584
23MYCD0385	GEO-01	360.0	361.0	1.00	0.11	396
23MYCD0385	GEO-01	362.0	363.0	1.00	0.11	392
23MYCD0385	GEO-01	363.0	364.0	1.00	0.06	458
23MYCD0385	GEO-01	367.0	368.0	1.00	0.16	76
23MYCD0385	GEO-01	380.0	401.0	21.00 1.00	0.48 5.11	268 398
	Including	385.0	386.0			
2214700205	Including	398.0	399.0	1.00	1.88 0.12	301
23MYCD0385	GEO-01	412.2	415.0	2.80	0.13 0.48	171 130
23MYCD0385	GEO-01	485.4	486.0	0.60		
23MYCD0385 23MYCD0385	GEO-01	514.0	515.0	1.00 4.00	0.24 1.09	80 533
251011 CD0385	GEO-01	519.0 520.0	523.0 521.0	4.00	2.08	491
	Including	520.0	521.0	1.00	2.00	471

Notes:

Table intersections are length-weighted assay intervals reported using the following criteria:

Intersection Interval = Nominal cut-off grade scenarios:

- ≥ 0.10 ppm (0.10 g/t) gold; and/or
- ≥ 400 ppm (0.04%) copper.
- No top-cutting has been applied to these individual assay intervals.
- Intersections are down hole lengths, true widths not known with certainty, refer to JORC Table 1 Section 2.

Phase 2 RC depth extensions for 2023 Phase 1 RC drill holes 23MYC0381 and 23MYC0383.

Table 2: Minyari Dome Project – 2023 Phase 2 Exploration Programme

Reverse Circulation and Diamond Core Drill Hole Collar Locations (MGA Zone 51/GDA 20)

23MYC0383* GEO-01 I 23MYC0418 GEO-01 I 23MYC0419 GEO-01 I 23MYC0420 GEO-01 I 23MYC0421 GEO-01 I 23MYC0422 GEO-01 I 23MYC0423 GEO-01 I	RC RC RC RC RC RC RC	7,633,857 7,633,864 7,633,821 7,633,929 7,633,894 7,633,868 7,633,838 7,633,838	423,887 423,713 423,448 423,723 423,763 423,794 423,760	277 276 275 276 277 277	 312 240 150 90 162 252 	239 239 236 301 298 302	-61 -60 -61 -61 -60	Received Received Received Received Received
23MYC0418 GEO-01 I 23MYC0419 GEO-01 I 23MYC0420 GEO-01 I 23MYC0421 GEO-01 I 23MYC0422 GEO-01 I 23MYC0423 GEO-01 I	RC RC RC RC RC RC	7,633,821 7,633,929 7,633,894 7,633,868 7,633,838	423,448 423,723 423,763 423,794	275 276 277 277	150 90 162	236 301 298	-61 -61 -60	Received Received
23MYC0419 GEO-01 I 23MYC0420 GEO-01 I 23MYC0421 GEO-01 I 23MYC0422 GEO-01 I 23MYC0423 GEO-01 I	RC RC RC RC RC	7,633,929 7,633,894 7,633,868 7,633,838	423,723 423,763 423,794	276 277 277	90 162	301 298	-61 -60	Received
23MYC0420 GEO-01 H 23MYC0421 GEO-01 H 23MYC0422 GEO-01 H 23MYC0423 GEO-01 H	RC RC RC RC	7,633,894 7,633,868 7,633,838	423,763 423,794	277 277	162	298	-60	
23MYC0421 GEO-01 F 23MYC0422 GEO-01 F 23MYC0423 GEO-01 F	RC RC RC	7,633,868 7,633,838	423,794	277				Received
23MYC0422 GEO-01 H 23MYC0423 GEO-01 H	RC RC	7,633,838	•		252	302	C1	
23MYC0423 GEO-01 I	RC		423,760	277			-61	Received
		7,633,839		277	204	301	-60	Received
	RC		423,673	276	102	300	-70	Received
23MYC0424 GEO-01 I		7,633,812	423,720	276	204	298	-70	Received
23MYC0425 GEO-01	RC	7,633,955	423,766	277	204	299	-61	Received
23MYC0426 GEO-01	RC	7,633,926	423,793	277	222	301	-61	Received
23MYC0427 GEO-01	RC	7,633,787	423,677	276	102	300	-61	Received
23MYC0428 GEO-01 I	RC	7,633,686	423,707	276	234	303	-61	Received
23MYC0429 GEO-01	RC	7,633,738	423,788	276	120	244	-61	Received
23MYC0430 GEO-01	RC	7,633,766	423,830	277	264	241	-60	Received
23MYC0431 GEO-01	RC	7,633,726	423,672	276	168	301	-60	Received
23MYC0432 GEO-01	RC	7,633,752	423,717	276	192	303	-61	Received
23MYC0433 GEO-01	RC	7,633,837	423,837	277	198	302	-60	Received
23MYC0434 GEO-01 H	RC	7,633,710	423,836	276	120	240	-61	Received
23MYC0435 GEO-01 H	RC	7,633,761	423,914	277	270	240	-61	Received
23MYC0436 GEO-01 H	RC	7,633,599	423,760	276	120	243	-59	Received
23MYC0437 GEO-01	RC	7,633,706	423,930	277	120	243	-59	Received
23MYC0438 GEO-01 H	RC	7,633,733	423,971	277	126	242	-59	Received
23MYC0439 GEO-01 H	RC	7,633,578	423,809	276	120	241	-60	Received
23MYC0440 GEO-01 I	RC	7,633,684	423,979	277	150	243	-61	Received
23MYCD0385 GE0-01	DD Tail	7,633,972	423,881	278	571	238	-60	Partially Rec.
23MYC0532 GEO-01 I	DD	7,633,801	423,800	277	341	301	-60	Pending
23TSD0001 TETRIS	DD	7,673,368	445,174	282	873	225	-68	Pending

Notes: Drill Hole Collar Table above - Refer to JORC Table 1 Section 1 for full drill hole information; including drill technique, sampling, and analytical technique/s. *Phase 2 RC depth extensions for 2023 Phase 1 RC drill holes 23MYC0381 and 23MYC0383.

Table 3: Minyari Dome Project – 2023 Phase 2 Exploration Programme

Air Core Drill Hole Collar Locations (MGA Zone 51/GDA 20)

Hole ID	Target	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
23MYA0142	GEO-01	AC	7634043	423899	278	54	58	-75	Pending
23MYA0143	GEO-01	AC	7633989	423811	277	55	58	-75	Pending
23MYA0144	GEO-01	AC	7634107	423820	278	21	58	-75	Pending
23MYA0145	GEO-01	AC	7634055	423737	277	60	58	-75	Pending
23MYA0146	GEO-01	AC	7634003	423653	276	44	58	-75	Pending
23MYA0147	GEO-01	AC	7633652	423554	275	27	58	-75	Pending
23MYA0148	GEO-01	AC	7633599	423471	275	24	58	-75	Pending
23MYA0149	GEO-01	AC	7633546	423391	275	34	58	-75	Pending
23MYA0150	GEO-01	AC	7633495	423290	277	30	58	-75	Pending
23MYA0151	GEO-01	AC	7633536	423559	275	14	58	-75	Pending
23MYA0152	GEO-01	AC	7633487	423479	275	35	58	-75	Pending
23MYA0153	GEO-01	AC	7633429	423393	276	24	58	-75	Pending
23MYA0154	GEO-01	AC	7633775	424130	279	7	58	-75	Pending
23MYA0155	GEO-01	AC	7633479	423660	275	18	58	-75	Pending
23MYA0156	GEO-01	AC	7633432	423578	275	42	58	-75	Pending
23MYA0157	GEO-01	AC	7633743	424200	279	18	58	-75	Pending
23MYA0158	GEO-01	AC	7633695	424119	278	24	58	-75	Pending
23MYA0159	GEO-01	AC	7633642	424031	277	21	58	-75	Pending
23MYA0160	GEO-01	AC	7633587	423939	277	21	58	-75	Pending
23MYA0161	GEO-01	AC	7633511	423814	276	17	58	-75	Pending
23MYA0162	GEO-01	AC	7633459	423727	275	45	58	-75	Pending
23MYA0163	Grover	AC	7636412	425383	285	57	112	-75	Pending
23MYA0164	Grover	AC	7636488	425198	284	38	112	-75	Pending
23MYA0165	Grover	AC	7636566	425010	282	10	112	-75	Pending
23MYA0166	Grover	AC	7636640	424826	282	38	112	-75	Pending
23MYA0167	Grover	AC	7636715	424642	281	38	112	-75	Pending
23MYA0168	Grover	AC	7636790	424460	279	41	112	-75	Pending
23MYA0169	Grover	AC	7636868	424271	278	58	112	-75	Pending
23MYA0170	Grover	AC	7636944	424089	278	45	112	-75	Pending
23MYA0171	Grover	AC	7637020	423902	276	77	112	-75	Pending
23MYA0172	Grover	AC	7636278	425194	285	75	112	-75	Pending
23MYA0173	Grover	AC	7636349	425026	284	64	112	-75	Pending
23MYA0174	Grover	AC	7636422	424842	283	10	112	-75	Pending
23MYA0175	Grover	AC	7636499	424656	282	29	112	-75	Pending
23MYA0176	Grover	AC	7636573	424472	281	27	112	-75	Pending
23MYA0177	Grover	AC	7636648	424288	282	42	112	-75	Pending
23MYA0178	Grover	AC	7636722	424101	278	51	112	-75	Pending
23MYA0179	Grover	AC	7636797	423912	277	51	112	-75	Pending
23MYA0180	Grover	AC	7636876	423758	275	67	58	-75	Pending
23MYA0181	Grover	AC	7636765	423586	273	36	58	-75	Pending
23MYA0182	Grover	AC	7636211	424858	284	64	112	-75	Pending

Hole ID	Target	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
23MYA0183	Grover	AC	7636286	424671	284	52	112	-75	Pending
23MYA0184	Grover	AC	7636432	424303	280	47	112	-75	Pending
23MYA0185	Grover	AC	7636508	424115	280	49	112	-75	Pending
23MYA0186	Grover	AC	7636580	423933	278	42	112	-75	Pending
23MYA0187	Grover	AC	7636647	423773	277	43	112	-75	Pending
23MYA0188	Grover	AC	7636358	424487	286	23	112	-75	Pending
23MYA0189	Grover	AC	7635976	424891	284	51	112	-75	Pending
23MYA0190	Grover	AC	7636055	424699	283	40	112	-75	Pending
23MYA0191	Grover	AC	7636132	424517	282	6	112	-75	Pending
23MYA0192	Grover	AC	7636208	424331	281	24	112	-75	Pending
23MYA0193	Grover	AC	7636281	424146	280	6	112	-75	Pending
23MYA0194	Grover	AC	7636355	423962	279	30	112	-75	Pending
23MYA0195	Grover	AC	7636427	423778	279	9	112	-75	Pending
23MYA0196	GEO-01	AC	7633670	424249	279	18	58	-75	Pending
23MYA0197	GEO-01	AC	7633619	424165	278	20	58	-75	Pending
23MYA0198	GEO-01	AC	7633563	424076	277	30	58	-75	Pending
23MYA0199	GEO-01	AC	7633511	423990	276	28	58	-75	Pending
23MYA0200	GEO-01	AC	7633459	423905	276	36	58	-75	Pending
23MYA0201	GEO-01	AC	7633659	424314	279	5	58	-75	Pending
23MYA0202	GEO-01	AC	7633620	424454	279	5	58	-75	Pending
23MYA0203	GEO-01	AC	7633572	424369	278	9	58	-75	Pending
23MYA0204	GEO-01	AC	7633521	424278	278	19	58	-75	Pending
23MYA0205	GEO-01	AC	7633462	424199	277	11	58	-75	Pending
23MYA0206	GEO-01	AC	7633426	424041	276	6	58	-75	Pending
23MYA0207	GEO-01	AC	7633711	423467	275	48	58	-75	Pending
23MYA0208	GEO-01	AC	7633665	423378	275	8	58	-75	Pending
23MYA0209	GEO-01	AC	7633609	423296	276	49	58	-75	Pending
23MYA0210	GEO-01	AC	7633547	423214	276	41	58	-75	Pending
23MYA0211	GEO-01	AC	7634230	423840	278	20	58	-75	Pending
23MYA0212	GEO-01	AC	7634178	423753	278	29	58	-75	Pending
23MYA0213	GEO-01	AC	7634129	423670	277	32	58	-75	Pending
23MYA0214	GEO-01	AC	7633509	424467	278	12	58	-75	Pending
23MYA0215	GEO-01	AC	7633455	424379	278	18	58	-75	Pending
23MYA0216	Waldorf West	AC	7642642	416232	255	114	58	-75	Pending
23MYA0217	Waldorf West	AC	7642539	416067	255	36	58	-75	Pending
23MYA0218	Waldorf West	AC	7642438	415908	255	63	58	-75	Pending
23MYA0219	Waldorf West	AC	7642322	415728	254	60	58	-75	Pending
23MYA0220	Waldorf West	AC	7642215	415556	252	73	58	-75	Pending
23MYA0221	Waldorf West	AC	7642119	415388	252	81	58	-75	Pending
23MYA0222	GEO-01	AC	7634304	423846	278	5	58	-75	Pending
23MYA0223	GEO-01	AC	7634253	423764	278	69	58	-75	Pending
23MYA0224	GEO-01	AC	7634287	423925	279	50	58	-75	Pending
23MYA0225	GEO-01	AC	7633886	423366	275	63	58	-75	Pending
23MYA0226	GEO-01	AC	7633837	423288	275	33	58	-75	Pending

Hole ID	Target	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
23MYA0227	GEO-01	AC	7633773	423203	275	42	58	-75	Pending
23MYA0228	GEO-01	AC	7633988	424188	281	31	58	-75	Pending
23MYA0229	GEO-01	AC	7633964	424150	281	21	58	-75	Pending
23MYA0230	GEO-01	AC	7633939	424106	280	32	58	-75	Pending
23MYA0231	GEO-01	AC	7634034	424167	281	27	58	-75	Pending
23MYA0232	GEO-01	AC	7633984	424082	280	38	58	-75	Pending
23MYA0233	GEO-01	AC	7633723	424808	280	10	58	-75	Pending
23MYA0234	GEO-01	AC	7633666	424719	280	19	58	-75	Pending
23MYA0235	GEO-01	AC	7633620	424643	280	21	58	-75	Pending
23MYA0236	GEO-01	AC	7633560	424546	279	19	58	-75	Pending
23MYA0237	T12	AC	7645191	416458	261	3	58	-75	Pending
23MYA0238	T12	AC	7645110	416312	260	20	58	-75	Pending
23MYA0239	T12	AC	7645037	416194	260	27	58	-75	Pending
23MYA0240	T12	AC	7644908	415973	257	14	58	-75	Pending
23MYA0241	T12	AC	7644820	415809	254	7	58	-75	Pending
23MYA0242	T12	AC	7644706	415627	253	17	58	-75	Pending
23MYA0243	T12	AC	7644809	416480	258	79	60	-75	Pending
23MYA0244	T12	AC	7644698	416296	258	66	60	-75	Pending
23MYA0245	T12	AC	7644598	416125	256	12	60	-75	Pending
23MYA0246	T12	AC	7644506	415960	255	30	60	-75	Pending
23MYA0247	T12	AC	7644412	415795	255	11	60	-75	Pending
23MYA0248	T12	AC	7644638	416914	260	65	60	-75	Pending
23MYA0249	T12	AC	7644531	416736	259	81	60	-75	Pending
23MYA0250	T12	AC	7644440	416556	260	75	60	-75	Pending
23MYA0251	T12	AC	7644343	416389	259	93	60	-75	Pending
23MYA0252	T12	AC	7644240	416214	258	64	60	-75	Pending
23MYA0253	T12	AC	7644492	417162	262	44	60	-75	Pending
23MYA0254	T12	AC	7644400	417005	261	58	60	-75	Pending
23MYA0255	T12	AC	7644304	416837	261	75	60	-75	Pending
23MYA0256	T12	AC	7644204	416664	260	55	60	-75	Pending
23MYA0257	T12	AC	7644113	416505	259	81	60	-75	Pending
23MYA0258	T12	AC	7644123	416375	259	69	100	-75	Pending
23MYA0259	T12	AC	7643955	416323	257	74	58	-75	Pending
23MYA0260	T12	AC	7643869	416187	256	48	58	-75	Pending
23MYA0261	T12	AC	7643768	416011	255	63	58	-75	Pending
23MYA0262	GEO-01	AC	7633937	423451	276	52	58	-75	Pending
23MYA0263	GEO-01	AC	7633764	423551	276	30	58	-75	Pending
23MYA0264	GEO-01	AC	7633626	423613	275	35	58	-75	Pending
23MYA0265	GEO-01	AC	7634074	424988	285	39	58	-75	Pending
23MYA0266	GEO-01	AC	7633973	424826	284	15	58	-75	Pending
23MYA0267	GEO-01	AC	7633868	424661	282	28	58	-75	Pending
23MYA0268	GEO-01	AC	7633760	424492	280	9	58	-75	Pending
23MYA0269	GEO-01	AC	7634189	424809	286	17	58	-75	Pending
23MYA0270	GEO-01	AC	7634079	424634	287	27	58	-75	Pending

23MYA0272 G 23MYA0273 G 23MYA0274 G	iEO-01 //	AC AC AC	7633994 7633883 7634762 7634658	424465 424291 424685	284 280	20 30		-75 -75	Pending Pending
23MYA0273 G 23MYA0274 G	ieo-01	AC AC	7634762			30	58	-75	Ponding
23MYA0274	EO-01	AC		424685	202				renuing
			7634658		283	23	58	-75	Pending
23MYA0275	ieo-01			424518	283	44	58	-75	Pending
		AC	7634553	424350	282	106	58	-75	Pending
23MYA0276	ieo-01	AC	7634450	424186	281	59	58	-75	Pending
23MYA0277 G	ieo-01	AC	7634335	424004	279	60	58	-75	Pending
23MYA0278	iEO-01	AC	7634778	424327	282	36	58	-75	Pending
23MYA0279	ieo-01	AC	7634671	424157	281	35	58	-75	Pending
23MYA0280	ieo-01	AC	7634564	423987	279	24	58	-75	Pending
23MYA0281	EO-01	AC	7634459	423821	279	12	58	-75	Pending
23MYA0282 GEO	-01 North	AC	7634832	424042	280	45	58	-75	Pending
23MYA0283 GEO	-01 North	AC	7634787	423969	279	39	58	-75	Pending
23MYA0284 GEO	-01 North	AC	7634682	423799	279	45	58	-75	Pending
23MYA0285 GEO	-01 North	AC	7634982	423899	279	23	58	-75	Pending
23MYA0286 GEO	-01 North	AC	7634905	423783	278	33	58	-75	Pending
23MYA0287 GEO	-01 North	AC	7634799	423608	278	31	58	-75	Pending
23MYA0288 GEO	-01 North	AC	7634702	423452	277	15	58	-75	Pending
23MYA0289 WA	ACA-East	AC	7634735	423204	276	30	58	-75	Pending
23MYA0290 WA	ACA-East	AC	7634678	423117	276	39	58	-75	Pending
23MYA0291 WA	ACA-East	AC	7634623	423037	277	30	58	-75	Pending

Notes: Drill Hole Collar Table above - Refer to JORC Table 1 Section 1 for full drill hole information; including drill technique, sampling, and analytical technique/s.

ANTIPA MINERALS LTD - MINYARI DOME PROJECT – 2023 Phase 2 Exploration Programme

Reverse Circulation, Diamond Core and Air Core Drilling

JORC Code 2012 Edition: Table 1 - Section 1 Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation Sampling The GEO-01 prospect has been sampled by 25 Reverse Circulation (RC) holes for a total of 4,024 metres, with an average hole depth of 175m. 23 holes were drilled from surface for a total of 3,820m. Two previously drilled RC holes were extended for a total of 204m. A total of 2,340 samples from 25 holes were submitted for analysis. Assay results for all holes have been received. RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. All RC samples were drilled using a 140mm diameter face sampling hammer with samples taken on one metre intervals. For greenfield / general exploration drill programmes, two to four metre composite samples are taken using the "spear" sample method to generate a 3kg sample for laboratory analysis. For intervals of obvious visual mineralisation, or for Mineral Resource definition drill programmes, individual (one) metre samples are collected in the field providing a 3kg sample for laboratory analysis. If warranted and based on anomalous laboratory assay results of (2 to 4m) composite samples, additional individual (one) metre samples may also be collected and submitted for laboratory analysis.

Criteria	JORC Code Explanation	Commentary
		Diamond Core Sampling
		 The GEO-01 prospect has been sampled by two diamond core drill holes, including one diamond tail of a Phase 1 RC drill hole, for a total of 762 metres, with an average hole depth of 456m.
		• The Tetris target has been sampled by one diamond core hole with a total depth of 873.2m. Mud rotary and PQ rough coring was utilised through the cover material to a depth of 476m.
		 Assay results are partially received for one diamond hole and pending for two other holes.
		 Diamond core sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice. Additional DMIRS sampling protocols were also followed.
		 All drill core was geologically, structurally and geotechnically logged and photographed prior to cutting.
		Half core samples were taken for all diamond core holes
		 using an automatic core saw. Half core was sampled, nominally as one metre samples with adjustments for major geological boundaries, with adjustments for major geological boundaries, with
		 sample lengths ranging between 0.3m and 1.2m. Half diamond drill core samples are submitted to the lab
		for assay.Half diamond drill core samples are submitted to GSWA as
		 per conditions of EIS Co-Funded Drill grants. All samples are pulverised at the laboratory to produce material for assay.
		Air Core Sampling
		 A large area, including several targets, was systematically sampled by 150 air core drill holes totaling 5,588m with an average drill hole depth of 37m. Assays results are pending for all air core drill holes.
		Air core drill holes were generally drilled on a range of hole

Criteria	JORC Code Explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 spacings along line and across line, testing soil geochemical ± geophysical (GAIP ± AEM ± aeromagnetic) targets. Locations and orientations for these air core drill holes are tabulated in the body of this report. One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 15. Air core sample piles representing 1m intervals were spear sampled to accumulate 4m composite samples for analysis, with a total of 2 to 3 kg collected into pre-numbered calico bags. The final metre of each hole was spear sampled to collect a total of 2 to 3 kg of cuttings into a pre-numbered calico bag. All samples are pulverised at the laboratory to produce material for assay. RC drilling All RC drill holes were completed using 140mm RC face sampling hammer drill bit from surface to total drill hole depths of between 90m to 270m. Diamond Core Drilling Diamond core drill holes at GEO-01 were completed with standard tube with a PQ diameter equipment at the start of hole to a designated depth depending on ground conditions. This is followed by HQ to a designated depth, then NQ to the end of hole. One diamond tail was completed at GEO-01 to a depth of \$71m. At Tetris, Mud rotary or rough coring with a PQ diameter through cover was utilised. Once in basement, HQ was drilled to a designated depth, then NQ to the end of hole. All diamond cores were orientated using a Reflex ACT electronic orientation tool.

Criteria	JORC Code Explanation	Commentary
Criteria Drill sample recovery	 JORC Code Explanation Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Air Core Drilling All air core holes were drilled by a Mantis 300 rig equipped with a 600cfm/200psi compressor owned and operated by Wallis Drilling Pty Ltd. All drillholes were completed using an 85mm air core blade bit. RC and Air Core Samples RC and air core sample recovery was recorded via visual estimation of sample volume, typically ranging from 90% to 100%, with only very occasional samples with less than 70% recovery. RC and air core sample recovery was maximized by endeavoring to maintain dry drilling conditions as much as practicable; the majority of RC and air core samples were dry. All RC samples were split using a rig-mounted cone splitter. Adjustments were made to ensure representative 2 to 3 kg sample were collected. Relationships between recovery and grade are not evident and are not expected given the generally excellent and
		 consistently high sample recovery. Diamond Drill Core Core recovery is recorded as a percentage. Overall core
		 recoveries averaged over 99.5% and there are no core loss issues or significant sample recovery problems except for occasional very localised/limited regions. Drillers used appropriate measures to maximise diamond core sample recovery. There is no relationship between sample recovery and/or mineralisation grade as the diamond core recovery was consistently high.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	 Geological logging of all RC, air core and diamond core sample intervals was carried out recording colour,

Criteria	JORC Code Explanation	Commentary
	 appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 weathering, lithology, mineralogy, alteration, veining and sulphides. Logging includes both qualitative and quantitative components. Logging was completed for 100% of all drill holes. All RC, air core and diamond core sample intervals were measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. A total of 4,024 metres of RC drill chip samples and a total of 5,589m of air core drill chip samples from one metre intervals were logged. A total of 1,159 metres of diamond core were logged during the drill programme. An additional 476m of mud rotary fines and sections of PQ core was logged at Tetris.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC Samples RC samples for all drill holes were drilled using a 140mm diameter face sampling hammer. Samples were collected as 1m splits from the rig mounted cone splitter. Field duplicate samples were collected for all RC drill holes. The majority of the samples were dry. Individual (one) metre (2 to 3kg) samples or two to four metre composite samples (2 to 3kg) were submitted for laboratory analysis. Diamond Core Diamond core was sampled as half core on a nominal 1.0m sample interval within unmineralised zones and on 0.3 to 1.2m intervals within the mineralised zones. Air Core Samples One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 15. Compositing air core samples of between 2 to 4 m was undertaken via combining 'Spear' samples of the intervals

Criteria	JORC Code Explanation	Commentary
		 to generate a 2 kg (average) sample. Sample Preparation Each sample was pulverised at the laboratory to produce material for assay. Sample preparation was carried out at ALS using industry standard crush and/or pulverizing techniques. Preparation includes over drying and pulverizing of the entire sample using Essa LM5 grinding mill to a grid size of 85% passing 75 µm. The sample sizes are considered appropriate for the style of mineralisation across the Minyari Dome Project.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 All drill samples were submitted to ALS in Perth for preparation and analysis. All samples were dried, crushed, pulverised and split to produce a sub–sample for laboratory analysis. RC and Diamond Core Sample Analysis Each sub-sample is digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acids ("four acid digest"). This digest is considered to approach a total dissolution for most minerals. Analytical analysis is performed using a combination of ICP-AES and ICP-MS. (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Ti, Tl, V, W and Zn). A lead collection fire assay on a 50g sample with Atomic Absorption Spectroscopy was undertaken to determine gold content with a detection limit of 0.01ppm.
		 Air Core Sample Analysis Each composite sub–sample was digested in a mixture of 3 parts hydrochloric acid and 1 part nitric acid ('aqua regia digest'), suitable for weathered air core samples. Aqua regia can digest many different mineral types including most oxides, sulphides and carbonates but will not totally digest refractory or silicate minerals. Analytical methods

Criteria	JORC Code Explanation	Commentary
		 used were both ICP–AES and ICP–MS (Au, Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr). End of hole sub-samples were analysed using a Multi-Element Ultra Trace method combining a four-acid digestion with ICP-MS instrumentation. A four-acid digest is performed on 0.25g of sample to quantitatively dissolve most geological materials. Analytical analysis performed with a combination of ICP-AES and ICP-MS. Four acid digestions quantitatively dissolve nearly all minerals (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Ti, Tl, V, W and Zn). A lead collection fire assay on a 50g sample with an ICP-AES finish was undertaken on end of hole samples to determine gold content with a detection limit of 0.001ppm.
		 RC, Diamond Core and Air Core samples Additional ore-grade analysis was performed as required for other elements reporting out of range. Field QC procedures involve the use of commercial certified reference material (CRM) for assay standards and blanks. Standards are inserted every 25 samples. The grade of the inserted standard is not revealed to the laboratory. Field duplicates/repeat QC samples was utilised during the RC drilling programme with nominally 1 in 30 duplicate samples submitted for laboratory assay for each drill hole, with additional duplicate samples submitted in mineralized zones. Inter laboratory cross-checks analysis programmes have not been conducted at this stage. In addition to Antipa supplied CRM's, ALS includes in each sample batch assayed certified reference materials, blanks and up to 10% replicates. If necessary, anomalous results are redigested to confirm

Criteria	JORC Code Explanation	Commentary
		results.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant drill intersections have been visually verified by multiple members of the Antipa geology team, including the Managing Director. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master SQL database. No adjustments or calibrations have been made to any laboratory assay data collected.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 km = kilometre; m = metre; mm = millimetre. Drill hole collar locations have been surveyed using a differential GPS with a stated accuracy of +/- 0.5m. The drilling co-ordinates are all in GDA2020 MGA Zone 51 co-ordinates. The Company has adopted and referenced one specific local grid across the Minyari Dome region ("Minyari" Local Grid) which is defined below. References in the text and the Minyari deposit diagrams are all in this specific Minyari Local Grid. Minyari Local Grid 2-Point Transformation Data: Minyari Local Grid 47,400m east is 421,462.154m east in GDA94 / MGA Zone 51; Minyari Local Grid 47,400m east is 414,078.609m east in GDA94 / MGA Zone 51; Minyari Local Grid 113,000m north is 7,644,356.108m north in GDA94 / MGA Zone 51; Minyari Local Grid North (360°) is equal to 328.2° in GDA94 / MGA Zone 51; Minyari Local Grid elevation is equal to GDA20 / MGA Zone 51.

Criteria	JORC Code Explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 hole collar coordinates and drone survey surface elevation values. Surveys were completed upon hole completion using a Reflex Gyro downhole survey instrument. Surveys were checked by the supervising Geologist for consistency. If required, readings were re-surveyed or smoothed in the database if unreliable azimuth readings were apparent. Survey details included drill hole dip (±0.25° accuracy) and drill hole azimuth (±0.35° accuracy), Total Magnetic field and temperature. Greenfields drill hole collar locations are generally drilled on a range of hole spacings testing geophysical (e.g. Induced Polarisation, magnetic, electromagnetic) and/or soil geochemical targets and/or air core geochemical anomalies. At GEO-01, the extent of the on average 50m x 50m drillhole spacing in the RC and diamond core drilling is sufficient to establish geological and grade continuity suitable for a Mineral Resource Estimate. Reported RC and diamond core intersections were aggregated using downhole length weighting of consecutive drill hole sample laboratory assay results.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The location and orientation of the Minyari Dome Project drilling is appropriate given the strike, dip and morphology of the mineralisation. No consistent and/or material sampling bias resulting from a structural orientation has been identified at Minyari Dome at this stage; however, folding and multiple vein directions have been recorded via surface mapping and (orientated) diamond core.
Sample security	The measures taken to ensure sample security.	 Chain of sample custody is managed by Antipa to ensure appropriate levels of sample security. Samples are stored on site and delivered by Antipa or their representatives to Port Hedland and subsequently by Toll Ipec Transport from Port Hedland to the assay laboratory in Perth.

Criteria	JORC Code Explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling techniques and procedures are regularly reviewed internally, as is the data. Consultants Snowden, during completion of the 2013 Calibre Mineral Resource estimate, undertook a desktop review of the Company's sampling techniques and data management and found them to be consistent with industry standards.

ANTIPA MINERALS LTD - MINYARI DOME PROJECT- 2023 Phase 2 Exploration Programme

Reverse Circulation, Diamond Core and Air Core Drilling

Section 2 – Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Antipa Minerals Ltd has the interests described below covering a total area of 726.4km², collectively known as the Minyari Dome Project, for the following Western Australia DMIRS granted Exploration Licences: E45/3918 = 100% of 29 graticular blocks covering a southern region of the licence being 92.8km²; E45/3919 = 100% of 15 graticular blocks covering the northernmost region of the licence being 48.0km²; E45/4618 = 100% of licence being 3.2km²; E45/4812 = 100% of licence being 28.8km²; E45/5079 = 100% of licence being 21.2km²; E45/5147 = 100% of licence being 236.8km²; E45/5655 = 100% of licence being 3.2km²; E45/5670 = 100% of licence being 3.2km²; E45/5671 = 100% of licence being 3.2km²; Antipa Minerals Ltd's interests in the Exploration Licences detailed above are not subject to any third party Farm-in or Joint Venture agreements. A 1.5% net smelter royalty is payable to Newcrest Mining

Criteria	JORC Code explanation	Commentary
		 Ltd on the sale of all metals on Exploration Licences E45/4812, E45/5079, E45/5147, and E45/5148. A 1.0% net smelter royalty is payable to Sandstorm Gold Ltd on the sale of all metals (excluding uranium) on Exploration Licences E45/3918 and E45/3919. A Split Commodity Agreement exists with Paladin Energy whereby it owns the rights to uranium on Exploration Licences E45/3918 and E45/3919. The Minyari, WACA, Minyari South and Sundown Mineral Resources are located wholly within Exploration Licence E45/3919. These tenements are contained completely within land where the Martu People have been determined to hold Native Title rights. To the Company's knowledge no historical or environmentally sensitive sites have been identified in the area being actively explored and reported herein. The tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Minyari and WACA deposits were greenfield discoveries by the Western Mining Corporation Ltd during the early 1980's. Exploration of the Minyari Dome region has involved the following companies: Western Mining Corporation Ltd (1980 to 1983); Newmont Holdings Pty Ltd (1984 to 1990); MIM Exploration Pty Ltd (1990 to 1991); Newcrest Mining Limited (1991 to 2015); and Antipa Minerals Ltd (2016 onwards).
Geology	• Deposit type, geological setting and style of mineralisation.	 The geological setting is Paterson Province Proterozoic aged meta-sediment hosted hydrothermal shear, fault and strata/contact controlled precious and/or base metal mineralisation which is typically sulphide bearing. The Paterson Province is a low grade metamorphic terrane but local hydrothermal alteration and/or contact

Criteria	JORC Code explanation	Commentary
		 metamorphic mineral assemblages and styles are indicative of a moderate to high-temperature local environment. The mineralisation in the region is interpreted to be intrusion related. Typical mineralisation styles include vein, stockwork, breccia and skarns.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A summary of all available information material to the understanding of the Minyari Dome region exploration results can be found in previous WA DMIRS publicly available reports. All the various technical Minyari Dome region exploration reports are publicly accessible via the DMIRS' online WAMEX system. The specific WAMEX and other reports related to the exploration information the subject of this public disclosure have been referenced in previous public reports.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drill hole intersections consisting of more than one sample were aggregated using downhole length weighting of consecutive drill hole sample laboratory assay results. No top-cuts to gold, copper, silver, or cobalt have been applied (unless specified otherwise). For RC and diamond core, a nominal 0.10 g/t gold, 400ppm copper, 0.60 g/t silver lower cut-off grades have been applied during data aggregation of drill results. Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals. Metal equivalence has not been used in the reporting of these drill intersections.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect 	 At this stage the reported intersection lengths are down hole in nature and the true width, which will be dependent on the local mineralisation geometry/setting, is not known. Mineralisation at the various greenfield prospects across the Minyari Dome Project consist of meta-sediment hosted

Criteria	JORC Code explanation	Commentary
	(e.g. 'down hole length, true width not known').	plus lesser mafic and felsic intrusion hosted intrusion related hydrothermal alteration, breccia and vein style gold-copper-silver-cobalt mineralisation. Based on limited drilling information, mineralisation at these prospects is interpreted to be generally steeply dipping and striking between approximately 320° to 350°. Mineralisation plunges at these prospects is under review.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 All appropriate maps and sections (with scales) and tabulations of intercepts have been publicly reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. Antipa Minerals Ltd publicly disclosed reports provide maps and sections (with scales) and tabulations of intercepts generated by the Company since 2011; these reports are all available to view on <u>www.antipaminerals.com.au</u> and <u>www.asx.com.au</u>.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All significant results are reported or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All meaningful and material information has been included in the body of the text or can sometimes be found in previous WA DMIRS WAMEX publicly available reports. The details of the Minyari Dome region historic Induced Polarisation (IP) survey, including IP Chargeability and resistivity anomalies, can be found in WA DMIRS publicly available WAMEX reports A81227 (2008), A86106 (2009) and A89687 (2010). The details of the Company's reprocessing, review and modelling of the Minyari Dome region historic Induced Polarisation survey, including IP Chargeability and resistivity anomalies, can be found in the Company's ASX report titled <i>"Minyari Reprocessed IP Survey Results"</i> created on 5 July 2016. Zones of mineralisation and associated waste material have not been measured for their bulk density; however, Specific

Criteria	JORC Code explanation	Commentary
		 Gravity ("Density") measurements continue to be taken from diamond drill core. Multi element laboratory assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulfur, lead, zinc and magnesium. Downhole "logging" of a selection of Minyari deposit RC drill holes was undertaken as part of the 2016 and 2021 drill programs using an OBI40 Optical Televiewer which generated an oriented 360 degree image of the drill hole wall via a CCD camera recorded digital image. The OBI40 system utilised also included a North Seeking Gyro-scope to measure drill hole location/deviation, and the downhole survey also measured rock density, magnetic susceptibility, natural gamma and included a borehole caliper device for measuring drill hole diameter. The combined dataset collected via the OBI40 Optical Televiewer downhole survey data has multiple geological and geotechnical uses, including but not limited to the detection and determination of in-situ lithological, structural and mineralisation feature orientations (i.e. dip and strike), determination and orientation of fracture frequency, general ground conditions/stability, oxidation conditions, ground-water table and clarity, etc. Information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material derived mainly from diamond drill core is stored in the Company's technical SQL database. No information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material were obtained from the WAMEX reports. Preliminary metallurgical test-work results are available for both the Minyari and WACA gold-copper-silver-cobalt deposits, these 13 June 2017 and 27 August 2018 metallurgical reports are available to view on www.antipaminerals.com.au: (https://antipaminerals.com.au:

Criteria	JORC Code explanation	Commentary
		 announcements/201129232007 2018-08-271.pdf) and WWW.aSX.COM.aU. This preliminary metallurgical test-work was completed at the Bureau Veritas Minerals Pty Ltd laboratories in Perth, Western Australia under the management of metallurgical consultants Strategic Metallurgy Pty Ltd in conjunction with Bureau Veritas metallurgists and Antipa's Managing Director. The 2017 metallurgical test-work demonstrated excellent gold recoveries for both oxide and primary mineralisation from the Minyari and WACA deposits, with the 2018 metallurgical test-work confirming the potential for the Minyari and WACA to produce copper-gold concentrate and cobalt-gold concentrate product with extremely favourable results. Optimisation of metallurgical performance is expected via additional test-work. In addition, the following information in relation to metallurgy was obtained from WA DMIRS WAMEX reports: Newmont Holdings Pty Ltd collected two bulk (8 tonnes each) metallurgical samples of oxide mineralisation in 1987 (i.e. WAMEX 1987 report A24464) from a 220m long costean across the Minyari deposit. The bulk samples were 8 tonnes grading 1.5 g/t gold and 8 tonnes grading 3.57 g/t gold from below shallow cover in the costean. However, it would appear the Newmont metallurgical test-work for these two bulk samples was never undertaken/competed as no results were subsequently reported to the WA DMIRS; Newmont Holdings Pty Ltd also collected drill hole metallurgical samples for Minyari deposit oxide and primary mineralisation (i.e. WAMEX 1986 report A19770); however, subsequent reporting of any results to the WA DMIRS could not be located suggesting that the metallurgical test-work was never undertaken/competed. Newcrest Mining Ltd describe the Minyari deposit gold- copper mineralisation as being typical of the Telfer gold-

Criteria	JORC Code explanation	Commentary
		copper mineralisation. In 2004 and 2005 (WAMEX reports A71875 and A74417) Newcrest commenced metallurgical studies for the Telfer Mine and due to the similarities with the Minyari mineralisation a portion of this Telfer metallurgical test-work expenditure was apportioned to the then Newcrest Minyari tenements. Whilst Telfer metallurgical results are not publicly available, the Telfer Mining operation (including ore processing facility) was materially expanded in the mid-2000's and continues to operate with viable metallurgical recoveries (for both oxide and primary mineralisation).
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional potential exploration activities are outlined in the body of this report. All appropriate maps and sections (with scales) and tabulations of intercepts have been publicly or previously reported by Antipa or can sometimes be found in previous WA DMIRS WAMEX publicly available reports.